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ABSTRACT 

SANTOS is a finite element program designed to compute the quasistatic, large deformation, inelastic response of 
two-dimensional planar or axisymmetric solids. The code is derived from the transient dynamic code PRONTO 2D. 
The solution strategy used to compute the equilibrium states is based on a self-adaptive dynamic relaxation solution 
scheme, which is based on explicit central difference pseudo-time integration and artificial mass proportional 
damping. The element used in SANTOS is a uniform strain 4-node quadrilateral element with an hourglass control 
scheme to control the spurious deformation modes. Finite strain constitutive models for many common engineering 
materials are included. A robust master-slave contact algorithm for modeling sliding contact is implemented. An 
interface for coupling to an external code is also provided. 
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1.0 INTRODUCTION

SANTOS is a finite element program developed for quasistatic, large deformation, inelastic analysis of two-

dimensionrd solids. It is a powerful analysis tool that allows the user to address the solution of complex problems

that include both material and geometric nonlinearities. The wide variety of constitutive models in the code allows

SANTOS to be used for a wide class of problems from geomechanics to metal forming.

In 1986, Taylor and Flanagan at Sandia National Laboratories/New Mexico developed a new transient

dynamics finite element code, which they named PRONTO (Taylor and Flanagan, 1987), that replaced the widely

used HONDO II (Key et al., 1978) code. PRONTO employed the same explicit central difference time integration

operator as HONDO II in addition to some new state-of-the-art features such as a uniform strain quadrilateral

element with single point integration, improved critical time step estimates, and more robust contact surfaces. The

code was written in a modular fashion with an easy-to-use interface for adding new constitutive models. The code

architecture and storage schemes in PRONTO were also developed to take advantage of vector processing on the

CRAY computer and to allow for the solution of extremely large problems. It seemed only natural, therefore, to

take advantage of the development work of Taylor and Flanagan and adapt PRONTO for the solution of quasistatic

problems by adding a self-adaptive dynamic relaxation scheme. A similar procedure was employed when adapting

HONDO II to produce the SANCHO (Stone et al., 1985) quasistatic finite element code. The development and use

of SANCHO showed that the same excellent results obtained for highly nonlinear transient dynamics problems

using explicit methods could be achieved for quasistatic problems using an explicit method such as dynamic

relaxation.

SANTOS belongs to a small but growing class of special purpose finite element codes which use iterative or

indirect solution methods to achieve quasistatic solutions. A companion code to SANTOS is JAC (EWlle and

Blanfor4 1994) which utilizes a nonlinear conjugate gradient iterative scheme for obtaining quasistatic solutions.

The solution algorithm in SANTOS is based on a self-adaptive dynamic relaxation scheme with uniform mesh

homogenization which is identical to the method used in SANCHO. Because SANTOS is explicit in nature, there

is no stiffness matrix to form or to factorize which reduces the amount of computer storage necessary for execution.

Dynamic relaxation is not a new quasistatic solution technique with some of the early introductory papers on

dynamic relaxation appearing in the mid- 1960s. Dynamic relaxation is attractive for three reasons: 1) it is

vectorizable, 2) it is versatile, and 3) it is reliable. Because it can be made explici~ it is highly vectorizable for

modem digital calculations. In an explicit form, it is ideal for dealing with large deformations, finite strains,

inelastic material behavior and contact surfaces. It is reliable in that if the algorithm converges and equilibrium is

achieved, then the solution obtained will be good. An early introduction of the idea is given by Otter et al. (1966),

but a more recent work which summarizes all of the significant contributions on the topic since Otter et al. can be

found in Undenvood (1983). Additional information on dynamic relaxation can be found in the paper by

Papadrakakis (1981).

There are many features and capabilities in SANTOS that make it a ve~ versatile and user-friendly computer

program. The code has a user-oriented data input scheme based on a free-field reader with keyword descriptors

that allow the user to define a complex problem with ve~ few commands. The material library in SANTOS

contains several nonlinear constitutive models that can be used to model many different engineering materials from

1



metals to foams. The material model interface is also well documented so that new materials maybe easily added.

SANTOS has the capability to accept temperature history data from an external source for solving thermal stress

problems. Lf the temperature history changes only in time and is uniform throughout the structure, it can be

generated within SANTOS itself. The contact or sliding of two surfaces with friction can also be modeled using

SANTOS. Surfaces can open or close as the solution dictates, which allows many physical processes to be

realistically modeled. Fixed contact surfaces may be used to join two regions with diiferent mesh discretizations.

A code interface (Taylor and Flanagan, 1988) is provided which allows an external, user-generated code to pass

data to SANTOS and to access internally computed SANTOS variables. An example of such coupling would be a

porous flow code providing a pore pressure field to SANTOS and SANTOS providing updated nodal coordinates

and stress components to the external code.

SANTOS resides and is maintained in the Sandia National Laboratories Engineering Analysis Code Access

System (SEACAS) (Sjaardema, 1993). The program is designed to work with a separate mesh generation program

that produces geometry and connectivity information in the SEACO format (Taylor and Flanagan, 1987). The

results from a SANTOS calculation are written in the SEACO format to a separate file for processing by separate

graphical post-processing and visualization software. SANTOS is written in standard FORTIL4N with any

systemdependent coding contained in the SUPES (Red-Horse et al., 1990) utilities package.

In the following sections of this report, a description of the theory and the computational models used in

SANTOS are given. A description of the available constitutive models is also provided. Because SANTOS is

derived directly from PRONTO, many of the theoretical sections are taken directly from the PRONTO theoretical

report. An input guide for use of the program is included along with several sample problems and their solutions.



2.0 GOVERNING EQUATIONS

In this chapter, we present the underlying continuum mechanics concepts necessary to follow the development

of the numerical algorithms in the following chapters. Bold face characters denote tensors. The order of the tensor

is implied by the context of the equation.

2.1 Kinematics

A material point in the reference configuration BO with position vector X occupies position x at time t in the

deformed configuration B. Hence we write x = ~(X,t). The motion fi-om the original configuration to the deformed

configuration shown in Figure 2.1.1 has a deformation gradient F given by

~ ax
det(F) >0 ,‘xi’

(2.1.1)

Applying the polar decomposition theorem to F:

F= VR=RU (2.1 .2)

where V and U are the symmetric, positive definite left and right stretch tensors, respectively, and R is a proper

orthogonal rotation tensor. Figure 2.1.1 illustrates the intermediate orientations defined by the two alternate

decompositions of F defined by Equation (2.1.2). The determination of R as defined by Equation (2.1.2) presents a

significant numerical challenge. In Section 3.3, we describe the incremental algebraic algorithm that we use to

determine R.

The velocity of the material point X is written as v = x where the superposed dot indicates time differentiation

holding the material point fixed. The velocity gradient is denoted by L and may be expressed as

(2. 1.3)

The velocity gradient can be written in terms of the symmetric (D) and antisyrnmetric (W) parts, respectively,

L= D+W. (2.1.4)

Using the right decomposition from Equation (2. 1.2) in Equation (2.1.3) gives

L= RRT+RUU-l RT . (2. 1.5)

Dienes (1979) denoted the first term on the right-hand side of Equation (2.1.5) by Q:

Q=RRT o (2.1.6)
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Figure 2.1.1. Original, deformed, and intermediate configurations of a body.

Both W and fZ are antisymmetric and represent a rate of rotation (or angular velocity) about some axes. In

general, Q #W. The difference arises when the last term of Equation (2.1.5) is not symmetric. The symmetric part

of u U-l “K the unrotated deformation rate tensor d as defined below (note that both U and WI are symmetric).

d=#UU-l+U-%)=RTDR . (2. 1.7)

There are two possible cases which can cause rotation of a material line element: rigid body rotation and shear.

Because total shear vanishes along the axes of principal stretch, the rotation of these axes defines the total rigid body

rotation of a material point.

It is a simple exercise in vector analysis to show that Equation (2.1.6) represents the rate of rigid body rotation

at a material point as shown by Dienes (1979). It is equally simple to show that W represents the rate of rotation of

the principal axes of the rate of deformation D. Since D and W have no sense of the history of deformation, they are

not sufficient to define the rate of rotation in a finite deformation context.

Line elements where the rate of shear vanishes rotate solely due to rigid body rotations. These line elements are

along the principal axes of U. We will apply a similar observation below as we derive Dienes’ (1979) expression

for calculating !2:
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Using the left decomposition of Equation (2.1.2) in Equation (2.1.3) gives

L= VV-*+Vf2V-1 . (2.1.8)

Postmultiplying by V yields an expression which defines the decomposition of L into V and Q:

LV=V+VQ . (2.1 .9)

When the dual vector of the above expression is taken, the symmetric V vanishes to yield a set of three linear

equations for the three independent components of !2

The antisymmetric part of a tensor may be expressed in terms of its dual vector and the permutation tensor eijk.

Define the following dual vectors;

~ = ‘ijk ‘jk (2.1.10)

Wi = eijk Wjk . (2.1.11)

Using Equations (2. 1.4), (2. 1. 10), and (2.1.11) in Equation (2.1.9) results in the expression that Dienes (1979)

gave for determining !2 from W and V;

61= w - 2[V - I tr(v)]-1 z (2.1.12)

where

Zi = eijk Vjm D~ . (2.1.13)

We observe from the above expressions that Q = W if and only if the product V D is symmetric. This condition

requires that the principal axes of the deformation rate D coincide with the principal axes of the current stretch V.

Clearly, a pure rotation is a special case of this condition since D, and consequently Equation (2.1.13), vanish.

2.2 Stress and Strain Rates

Our constitutive model architecture is posed in terms of the conventional Cauchy stress, but we adopt the

approach of Johnson and Bammann (1984) and define a Cauchy stress in the unrotated configuration. The reader

seeking more detail than is presented here should see Flanagan and Taylor (1987). The “true” stress in the deformed

configuration is denoted by T. The Cauchy stress in the unrotated configuration is denoted by o. These two stress

measures are related by

G= RTTR . (2.2.1)

Each material point in the unrotated configuration has its own reference frame which rotates such that the

deformation in this frame is a pure stretch. Then T is simply the tensor (s in the fixed global reference frame. The

conjugate strain rate measures to T and G are D and d, respectively. These strain rates were defined by Equations

(2. 1.4) and (2. 1.7), respectively.
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conjugate strain rate measures to T and c are D and d, respectively. These strain rates were defined by Equations

(2. 1.4) and (2.1.7), respectively.

The Principal of Material Frame Indifference (or objectivity) stipulates that a constitutive law must be

insensitive to a change of reference frame (Truesdell, 1966). This requires that only objective quantities may be

used in a constittttive law. An objective quantity is one which transforms in the same manner as the energy

conjugate stress and strain rate pair under a superposed rigid body motion. The tlmdamental advantage of the

unrotated stress over the true stress is that the material derivative of G is objective, whereas the material derivative

of T is not.

The Jattmann rate defined below is frequently used in constitutive relationships to resolve the need for an

objective rate of Cauchy stress.

i= T–WT+TW . (2.2.2)

A simihu stress rate, called the Green-Naghdi rate by Johnson and Bammarm (1984) can be derived by

transforming the rate of the unrotated Cauchy stress to the fixed global frame as follows:

a=R6RT=T–nT+Tn . (2.2.3)

The Jautn,ann rate and the Green-Naghdi rate are very similar in form. The important difference between the two

is that the Green-Naghdi rate is cinematically consistent with the rate of Catchy stress, while the Jautnann rate is

not. By this statement we mean that &is identical to ~ in the absence of rigid body rotations. It is clear that ~

need not equal ~ under the same conditions since W need not vanish with rigid body rotations.

The simple shear problem presented by Dienes (1979) senfes as an excellent demonstration of the symptoms

which can occur due to the deficiency of the Jaumann rate. Figure 2.2.1 shows a body which undergoes the

following motion:

x(t)= X+kt Y, y(t) = Y, z(t) = z . (2.2.4)

Dienes applied a simple linear isotropic hypoelastic material law to both the Jaumann rate (2.2.2) and the Green-

Naghdi rate (2.2.3). The analytic solution for the true stresses as a fimction of time using the Jaumann rate is

shownin Figure2.2.1, The Green-Naghdirate solutionis shownin Figure 2.2.2 and demonstratesa monotonic
increase in stress with increasing shear strain, while the Janmann rate results in a harmonic oscillation of the

stress. The reason that the Jaumantt rate produces this oscillation in stress is that W gives a constant rate of

rotation for the motion defined by Equation (2.2.4), while Ct vanishes with time. Clearly, the body experiences

rotations which diminish over time, but the Jaumann rate continues to drive the stress convection terms at a

constant rate. This leads to the oscillatory behavior of the stresses shown in Figure 2.2.1.

A distinct advantage of the tmrotated reference frame is that all constitutive models are cast without regard to

finite rotations. This greatly simplifies the numerical implementation of new constitutive models. The rotations of

6
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Figure 2.2.1, Computed stress-strain curves for a body undergoing simple shear using the Jaumann rate.
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Figure 2.2.2. Computed stress-strain curves for a body undergoing simple shear using the Green-Naghdi rate.
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global state variables

models are consistent.

The drawback to

(e.g., stress and strain) are dealt with on a global level which ensures that all constitutive

Internal state variables (e.g., backstress) see no rotations whatsoever.

work]ng in the unrotated reference frame is that we must accurately determine the rotation

(2.3.1)

tensor, R, which is not a straightforward numerical calculation. We present an incremental, algebraic algorithm to

accomplish this task in Section 3.4.

2.3 Fundamental Equations

The equilibrium equation for the body is

div T+pb=O

where p is the mass density per unit volume and b is a specific body force vector.

We seek the solution to Equation (2.3.1) subject to the boundary conditions

u = f(t) on Su (2.3.2)

where Su represents the portion of the boundary on which kinematic quantities are specified (displacement). In

addition to satisfying the kinematic boundary conditions given by Equation (2.3.2), we must satisfy the traction

boundary conditions

Ton=s(t)on S~ (2.3.3)

where ST represents the portion of the boundary on which tractions are specified. The boundary of the body is given

by the union of Su and ST, and we note that for a valid mechanics problem Su and ST have a null intersection.

The jump conditions at all contact discontinuities must satis& the relation

(T+- T-). n= Oon Sc (2.3.4)

where Sc represents the contact surface intersection and the subscripts “+” and “-” denote different sides of the

contact surface.

To utilize dynamic relaxation as a solution strategy for quasktatics problems,

equilibrium equations into equations of motion by adding an acceleration term. Thus,

divT + pb = pu

we must first convert the

(2.3.5)

where u is the acceleration of the material point. Now, all that remains is to introduce the concept of mesh

homogenization and artificial darnping as well as integrate forward in time horn initial conditions until the transient

dynamic response has damped out to the static result with equilibrium satisfied. Further description of the

implementation of the dynamic relaxation method will be discussed in a later section (Section 3.7).
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3.0 NUMERICAL FORMULATION

In this chapter, we describe the finite element formulation of the problem and the numerical algorithms required

to perform the spatial and temporal integration of the equations of motion.

3.1 Four-Node Uniform Strain Element

The four-node two-dimensional isoparametric element is widely used in computational mechanics. Optimal

integration schemes for these elements, however, present a dilemma. A one-point integration of the element under-

integrates the element, resulting in a rank deficiency for the element which manifests itself in spurious zero energy

modes, commonly referred to as hourglass modes. A two-by-two integration of the element over-integrates the

element and can lead to serious problems of element locking in fully plastic and incompressible problems. The four-

point integration also carries a tremendous computational penalty compared to the one-point rule. We use the one-

point integration of the element and implement an hourglass control scheme to eliminate the spurious modes. The

development presented below follows directly from Flanagan and Belytschko (1981). We assume that the reader is

somewhat familiar with the finite element method and will not go into a complete description of the method. The

reader can consult numerous texts on the method (Hughes, 1987).

The quadrilateral element relates the spatial coordinates xi to the nodal coordinates xiI through the isoparametric

shape functions $1 as follows:

In accordance with indicial notation convention, repeated subscripts imply summation over the range of that

subscript. The lowercase subscripts have a range of two, corresponding to the two-dimensional spatial coordinate

directions. Uppercase subscripts have a range of four, corresponding to the element nodes.

The same shape functions are used to define the element displacement field in terms of the nodal displacements

Since the same shape functions apply to both spatial coordinates and displacements,

(represented by a superposed dot) must vanish. Hence, the velocity field maybe given by

Ui = ‘iI @I

and likewise for the acceleration field

Ui=fiiI~ .

The velocity gradient tensor, L, is defined in terms of nodal velocities as

Lij = tii,j = hiI @I,J .

(3. 1.2)

their material derivative

(3. 1.3)

(3. 1.4)

(3.1.5)
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By convention, a comma preceding a lowercase subscript denotes differentiation with respect to the spatial

coordinates (e.g., Ui,j denotes ~lii 1 dxj).

The two-dimensional isoparametric-shape functions map the unit square in ~-~ to an arbitrary quadrilateral in x-

y, as shown in Figure 3.1.1. We choose to center the unit square at the origin in <-q space so that the shape functions

may be conveniently expanded in terms of an orthogonal set of base vectors, given in Table 3.1, as follows:

Table 3.1

(3. 1.6)

node k ‘rl ~1 A1l A21 rI

“1 -.5 -.5 1 -1 -1 1

2 .5 -.5 1 1 -1 -1

3

4

.5

-.5

.5 1

.5 1

1

-1

1

1

1

-1

The above vectors represent the displacement modes of a unit square. The first vector, XI, accounts for rigid

body translation. We call ~ the summation vector since it may be employed in indicial notation to represent the

algebraic sum of a vector.

The linear base vectors AiI may be readily combined to define the uniform normal strains and shear strain in the

element. We refer to AiI as the volumetric base vectors since, as we will illustrate below, they are the only base

vectors that appear in the element area expression.

The last vector, rl, gives rise to linear strain modes that are neglected in the uniform strain integration. This

vector defines the hourglass patterns for a unit cube. The displacement modes represented by the vectors in Table

3.1 are also shown in Figure 3.1.1.
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Figure 3.1.1. Mode shapes for the four-node constant strain quadrilateral element.

3.1.1 Plane Strain Case

In the finite element method, we replace the momentum Equation (2.3.5) with a weak form of the equation.

Using the principal of virtual work, we write the weak form of the equation as

‘J v ~(Tij,j‘Pbl F._piii uidV=O
e

(3. 1.7)

where &i represents an arbitrary virtual displacement field, with the same interpolation as Equation (3.1.2), which

satisfies the kinematic constraints. In plane strain, the thickness of the body is considered uniform and arbitrary and

therefore can be eliminated from the preceding expression. Integrating by parts and applying Gauss’ divergence

theorem to Equation (3. 1.7) then gives

[

~ ~ Tijnj~Uid/ -~ 1*Tij&ui,jdA+~A pbi&uidA_~A piii6uidA = O
e s

e e e e

The summation symbol represents the assembly of element force vectors into a global nodal force array.

that the reader understands the details of this assembly; we will not discuss it further in this document.

(3.1.8)

We assume

11



The second integral in the preceding equation is used to define the element internal force vector fiI as

3uiI ‘iI = ~Ae ‘ij aui,j ‘A “ (3.1 .9)

The first and third integrals define the external force vector, and the fourth integral defines the inertial response.

We perform one-point integration by neglecting the nonlinear portion of the element displacement field, thereby

considering a state of uniform strain and stress. The preceding expression is approximated by

(3.1.10)

—
where we have eliminated the arbitrary virtual displacements, and Tij represents the assumed uniform stress tensor.

By neglecting the nonlinear displacements, we have assumed that the mean stresses depend only on the mean strains.

Mean kinematic quantities are defined by integrating over the element as follows:

We now define the discrete gradient operator as

‘iI = ~A$I,i ‘A “

The mean velocity gradient, applying Equation (3. 1.5), is given by

(3.1.11)

(3.1.12)

(3.1.13)

Combining Equations (3. 1.10) and (3. 1.12), we may express the nodal forces by

fil = ~ij Bjl . (3.1.14)

Computing nodal forces with this integration scheme requires evaluation of the gradient operator and the

element area. These two tasks are linked since

‘M = Sij (3.1.15)

where ~ij is the Kroneker delta. Equations (3.1.1), (3.1.12), and (3.1. 15) yield

XiI BjI = ~V(XiI $I),j dA =A~ij . (3.1.16)
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Consequently, the gradient operator may be expressed by

(3.1.17)

To integrate the element area in closed form, we use the Jacobian of the isoparametric transformation to

transform the integral in x-y space to an integral over the unit square:

where

J_axay axay_—— ———
a~~ hag “

Therefore, Equation (3. 1.18) can be written as

A = xl yJ C1~

where

(3.1.18)

(3.1.19)

(3.1.20)

(3.1.21)

In light of Equation (3.1.6), the above integration involves at most bilinear functions. Therefore, only the

constant term does not vanish and the integration yields

CD= ~(A1l A2J -A21 AIJ) .

Note that CIJ is antisymmetric:

CIJ = -CIJ .

Evaluating Equation (3. 1.22), we obtain the following explicit representation for C~:

[1
o –1

1–: : 1 ()
Cu=p-lol.

lo–lo

(3.1.22)

(3. 1.23)

(3. 1.24)

Substituting the above expression into Equation (3. 1.20), we obtain the familiar expression for the area of a

quadrilateral:
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A =:[(x3 -x1)(y4 – y2)+(x2 –x4)(y3–yl)l .
L

Using this result in Equation (3.1.17), the B matrix may be expressed as

{1[Yj 1 (Y2 - Y4)(Y3 – Y1)(Y4 - Y2)(Y1 - Y3)1‘iJ=Cu‘Xj=i (X4 - x2)(xl – X3)(X2 - X4)(X3 - ‘1) ‘

(3.1.25)

(3.1.26)

The mean stress approach used here gives the same result in two dimensions as the one-point quadrature rule for the

quadrilateral because the Jacobian is at most bilinear.

3.1.2 Axisymmetric Case

The axisymmetric quadrilateral poses a special problem for the finite element method in that we must reduce a

three-dimensional variational Equation (3. 1.7) to a two-dimensional element domain. The formulation is

complicated by the fact that the variational principle is cast in cylindrical, rather than Cartesian coordinates.

We will start by defining the cylindrical coordinate system as follows:

ra = (r,z,(3) . (3.1.27)

While the above ordering of the coordinates is unconventional (and not right-handed), it degrades cleanly to the

axisymmetric case. Note that Greek indices have a range of three and that superscripts and subscripts indicate

contravariant and covariant tensor components, respectively.

The shape functions of the axisymmetric uniform strain quadrilateral are the same as those for the plane strain

case (Table 3.1 ) and are defined implicitly in terms of the nodal coordinates

ri=l_iI~ . (3.1.28)

Note that lowercase English indices have a range of two and that, since the two-dimensional coordinate system is

Cartesian, there is no distinction between covariant and contravariant tensor components.

In our Lagrangianformulation,the sameshapefunctionsare appliedto the displacementfields. This implies
that the material derivatives of the shape functions vanish. As a result, these shape functions also apply to the

velocity field, just as in the plane strain case:

ii = riI $1 . (3.1.29)

The weak form given by Equation (3.1.7) is expressed in cylindrical coordinates as

H )TUP ,P +pba – ptia &adV = O .Ve
e

(3.1.30)
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We are now faced with a three-dimensional variational principle, but only a two-dimensional element. Because

the differential of volume imposes a factor of r on the differential of area (dV = 2nrdA), there is an implicit r

weighting on the integrand of the weak form in Equation (3.1.30). This means that the integrand vanishes near the

axis of symmetry (r= O) regardless of the variations! This also means that the discretized equations generated by the

finite element method become ill-conditioned near the axis.

This dil%culty is resolved by dividing the integrand of Equation (3.1.30) by r to reduce the integration to the

element domain. However, we must carry this weighting factor in order to apply Gauss’ theorem in three

dimensions. This technique was referred to as a Petrov-Galerkin, or area-weighted finite element, formulation by

Goudreau and Hallquist (1982).

[ 1~&J: ~(~su~)dY+~Aepba~uadA-fAepuasuadA=0 . (3.1.31)

e

Integrating by parts and applying Gauss’ theorem yields the following:

[

(r a) ;dA+J-Ae ~~ & ‘p5”anpds-~A‘ap‘au
1

pba6uadA – ~A piia6uadA = 0. (3. 1.32)

e e e

Evaluating the covariant derivative in the preceding equation yields

(3.1.33)

where ry are the Euclidian Christoffel symbols associated with the cylindrical coordinate system. The only
@

nonzero components are

r~3 = –r

We are now in a position to degenerate the variational equations to the axisymmetric case. The axisymmetry

conditions require that variations and derivatives in (1 vanish. Combining Equations (3. 1.32) to (3.1.34) and

enforcing axisymmetry gives
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X[J‘ijnjauids – j’A ~ljaui,j + ‘T 336u1 _ $Til&l
)

. dA
se

e e

(3.1.35)

Note that we have dropped the contravariant superscript notation for English indices in going from Equations

(3. 1.32) to (3.1.35) because as we stated previously, there is no distinction between contravariant and covariant

components in our two-dimensional coordinate system.

A byproduct of the Petrov-Galerkin formulation is that the resulting weak form for the axisymmetric case,

Equation (3. 1.35), is nearly identical to that of the plane strain case, Equation (3.1.8). The only difference is the

addition of the last two terms to the internal force expression, which is the second integral above. This is clearly a

major architectural advantage to SANTOS.

Note that the last term of the axisymmetric internal force expression is not associated with strain. These forces

are analogous to the covected force term which appears in the stress divergence as shown below.

(3.1.36)

If the M correction is omitted in Equation (3.1.31), the final term in the axisymmetric internal force disappears.

It is convenient for a finite element program to work with physical, rather than tensoral, stress components. In

our formulation, the hoop stress is the only component which requires such a distinction. The physical hoop stress

T33 is given by

T33 = r2 T33 .

The internal forces are then given by

‘iI = ~A ‘ij%,J dA +~A (T33% ~ –Ti@IdA .

Evaluating all these integrals with single-point integration yields

‘iI ‘7ijBjI ‘(T33~il ‘TilJ~~I .

(3.1.37)

(3.1.38)

(3.1.39)

where

(3.1.40)
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We now see that the internal force vector for the axisymmetric case, Equation (3.1.39), is the same as that for the

plane strain case, Equation (3. 1.14), with the addition of the hoop stress and covected forces.

The velocity gradient in cylindrical coordinates is

k+j=%p-r:pUy “
(3.1.41)

Substituting Equation (3. 1.34) into the above equation and enforcing axisymmetry leaves only five nonzero

components: the four in-plane components, and the physical hoop strain rate D33. This additional strain rate

component is defined conjugate to Equation (3.1.37) as

D33=~u313=~ .
r

We evaluate this quantity with one-point integration as follows:

where F is given by Equation (3.1.40) and

(3.1 .42)

(3.1.43)

(3.1 .44)

3.1.3 Lumped Mass Matrix

One of the aforementioned advantages of using the Petrov-Galerkin method for the axisyrnrnetric case is that the

inertial terms in the variational statement of the boundary value problem are identical for both the plane strain,

Equation (3. 1.8), and axisymmetric, Equation (3.1.35), cases. Therefore, we can treat both cases at one time.

To reap the benefits of an explicit architecture, we must diagonalize the mass matrix. We do this by integrating

the inertial energy variation as follows:

(3.1.45)

where

mlJ = pA&J (3. 1.46)

and 81J is the Kroneker delta. Clearly, the assembly process for the global mass matrix from the individual element

matrices results in a global mass matrix which is diagonal and can be expressed as a vector, M1.
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3.2 Explicit Time Integration

SANTOS uses a modified central difference scheme to integrate the equations of motion through time. By this

we mean that the velocities are integrated with a forward difference, while the displacements are integrated with a

backward difference. The integration scheme for a node is expressed as

( )f ‘XT – ftNT / Mtit= t

‘t+At =ut+Atut

(3.2.1)

(3.2.2)

and

‘t+At = Ut =tAt tit+& (3.2.3)

where f t~andft ~ are the external and internal nodal forces, respectively, M is the nodal point lumpedmass,
and At is the time increment.

The central difference operator is conditionally stable. It can be shown that the Courant stability limit for the

operator is given in terms of the highest eigenvalue in the system (Max):

At<~ .
03max

(3.2.4)

In Section 3.5, we discuss how the highest eigenvalue is approximated and how we determine a stable time

increment.

3.3 Finite Rotation Algorithm

We stated in Section 2.2 that one of our fundamental numerical challenges in the development of an accurate

algorithm for finite rotations was the determination of R, the rotation tensor defined by the polar decomposition of

the deformation gradient F. We developed an incremental algorithm for reasons of computational ef%ciency and

numerical accuracy. The validity of the unrotated reference frame is based on the orthogonal transformation given

by Equation (2.2.1). Therefore, the crux of integrating Equation (2.1.6) for R is to maintain the orthogonality of R.

If one integrates R = (2R via a forward difference scheme, the orthogonality of R degenerates rapidly no matter

how fine the time increments. We instead adapted the algorithm of Hughes and Winget (1980) for “integrating

incremental rotations as follows.

A rigid body rotation over a time increment At may be represented by

‘t+At = @t% (3.3.1)

where QAt is a proper orthogonal tensor with the same rate of rotationas R givenby Equation (2.1.6). The to~

rotation R is updated via the highly accurate expression below.
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‘t+At = QAt % (3.3.2)

For a constant rate of rotation, the midpoint velocity and the midpoint coordinates are related by

– k(xt+At~Ixt+At ‘Xt) – * +Xt) .

Combining Equations (3.3. 1) and (3.3.3) yields

Since xt is arbitrary in Equation (3.3.4), it maybe eliminated. We then solve for QAP The result is

(3.3.3)

(3.3.4)

(3.3.5)

The accuracy of this integration scheme is dependent on the accuracy of the midpoint relationship of Equation

(3.3.3). The rate of rotation must not vary significantly over the time increment. Furthermore, Hughes and Winget

(1980) showed that the conditioning of Equation (3.3.5) degenerates as AtL2 grows.

Our complete numerical algorithm for a single time step is as follows:

1. Calculate D and W.

2. Compute

3. Solve

4. Calculate

5. Update

6. Compute

7.’ Integrate

8. Compute

Zi = eijk Vjm Dmk,

6)= w - 2[V - I tr(V)]-l z , and

Qij = + eijk ~ .

V=(D+W)V– VK2 .

Vt+At = Vt +At VAt . .

d= RTDR.

b =f(d, ts) .

T= RcJRT .

l%is.algorithm requires that the tensors V and R be stored in memory for each element.
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3.4 Determination of Effective Moduli

Algorithms for calculating the stable time increment and hourglass control require dilatational and shear moduli.

In SANTOS, we use an algorithm for adaptively determining the effective dilatational and shear moduli of the

material.

Because SANTOS uses an explicit integration algorithm, the constitutive response over a time step can be recast

a posterior as a hypoelastic relationship. We approximate this relationship as isotropic. This defines effective
.

moduli, 1 and ~ in terms of the hypoelastic stress increment and strain increment as follows:

A~ij = At(~dkk ~ij+2@dij) . (3.4.1)

Equation (3.4.1) can be rewritten in terms of volumetric and deviatoric parts as

bkk = At(3i + 2@)dkk (3.4.2)

and

sij = At 2~ &ij (3.4.3)

where

and

(3.4.5)&ij =dij–~du Sij .

The effective bulk modulus follows directly from Equation (3.4.2) as

3g=3~+2fi=~ . (3.4.6)
mm

TakingtheinnerproductofEquation(3,4.3)withitselfandsolvingfortheeffectiveshearmodulus21 gives

J Sij Sij
2@= (3.4.7)

At2 E -mn ‘mn

Using the result of Equation (3.4.6) with Equation (3.4.7), we can calculate the effective dilatational modulus

i+2fi:

~+2jj=+(3k+20(2@) . (3.4.8)
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If the strain increments are insignificant, Equations (3.4.6) and (3.4.7) will not yield numerically meaningful

results. In this circumstance, SANTOS sets the dilatational modulus to an initial estimate, k. + 21-L0. An initial

estimate for the dilatational modulus is, therefore, the only parameter which every constitutive model is required to

provide to the time step control algorithm.

In a case where the volumetric strain increment is significant but the deviatoric increment is not, the effective

shear modulus can be estimated by rearranging Equation (3.4.8) as follows:

2jj = ~(3(L0 + 2/.tO)-3k) . (3.4.9)

If neither strain increment is significant, SANTOS sets the effective shear modulus to the initial dilatational

modulus. The algorithm that SANTOS follows to estimate the effective dilatational and shear moduli is summarized

in Table 3.2.

Table 3.2

I Atdkk >10-6 At2&ij&ij>10-12 i+2ti 21

Yes Yes (3.4.8) (3.4.7)

Yes No Lo+ 2p. (3.4.9)

No Yes Lo+ 2p. (3.4.7)

No No Lo+ 2p. h+2~

3.5 Determination of the Stable Time Increment

Flanagan and Belytschko (1984) provided eigenvalue estimates for the uniform strain quadrilateral described in

Section 3.1. They showed that the maximum eigenvalue was bounded by

~k+2~ BiIBiI , ~p ,2k+2~ BiIBiI

P A2 ‘mm- Q’ A2 “
(3.5.1)

Using the effective dilatational modulus from Section 3.4 with the eigenvalue estimates of Equation (3.5.1) allows us

to write the stability criteria of Equation (3.2.4) as

(3.5.2)



The stable time increment is determined from Equation (3.5.2) as the minimum over all elements.

The estimate of the critical time increment given in the preceding equation is for the case where there is no

damping present in the system. If we define & as the fraction of critical damping in the highest element mode, the

stability criterion of Equation (3.5.2) becomes

AG.(- ) . (3.5.3)

Conventional estimates of the critical time increment size have been based on the transit time of the dilatational

wave over the shortest dimension of an element or zone. For the undamped case, this gives

At= ~/C (3.5.4)

where c is the dilatational wave speed and t is the shortest element dimension.

There are two fundamental and important differences between the time increment limits given by Equations

(3.5.2) and (3.5.4). First, our time increment limit is dependent on a characteristic element dimension, which is

based on the finite element gradient operator and does not require an ad hoc guess of this dimension. This

characteristic element dimension, t, is defined by inspection of Equation (3.5.2) as

(3.5.5)

Second, the sound speed used in the estimate is based on the current response of the material and not on the

original elastic sound speed. For materials that experience a reduction in stiffness due to plastic flow, this can result

in significant increases in the critical time increment.

It should be noted that the stability analysis performed at each time step predicts the critical time increment for

the next step. Our assumption is that the conservativeness of this estimate compensates for any reduction in the

stable time increment over a single time step.

3.6 Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only a fully linear velocity field. The

remaining portion of the nodal velocity field is the so-called hourglass field. Excitation of these modes may lead to

severe, unresisted mesh distortion. The hourglass control algorithm described here is taken directly from Ftanagan

and Belytschko (1981). The method isolates the hourglass modes so that they may be treated independently of the

rigid body and uniform strain modes.

A fully linear velocity field for the quadrilateral can be described by

li~in=iii+iii,j(Xj ‘~j) . (3.6.1)
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The mean coordinates Z, correspond to the center of the element and are defined as

The mean translational velocity is similarly defined by

(3.6.2)

(3.6.3)

The linear portion of the nodal velocity field may be expressed by specializing Equation (3.6.1) to the nodes as

follows:

where XI is used to maintain consistent index notation and indicates that fii

(3.6.4)

and Xj are independent of position

within the element. From Equations (3. 1.16) and (3.6.4) and the orthogonality of the base vectors, it follows that

‘iI~I=u$~I=4fii (3.6.5)

and

The hourglass field U$ may now be defined by removing the linear portion of the nodal velocity field:

Equations (3.6.5) through (3.6.7) prove that ~1 and BjIare orthogonal to the hourglass field:

Furthermore, it can be shown that the B matrix

Equation (3.6.9) can be written as

U$BjI =0 .

is a linear combination

U~A1 =0 .

(3.6.6)

(3.6.7)

(3.6.8)

(3.6.9)

of the volumetric base vectors, A1, so

(3.6.10)
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Equations (3.6.8) and (3.6.10) show that the hourglass field is orthogonal to all the base vectors in Table 3.1
hg

except the hourglass base vectors. Therefore, u il may be expanded as a linear combination of the hourglass base

vectors as follows:

(3.6.11)

The hourglass nodal velocities are represented by ~i above (the leading constant is added to normalize rI). We now

define the hourglass-shape vector yl such that

qi ‘~uiI~l . (3.6.12)

13y substituting Equations (3.6.4), (3.6.7), and (3.6.12) into (3.6.11), then multiplying by rI and using the

orthogonality of the base vectors, we obtain the following:

iiiI rI ‘iii,j XJI rI = uiI~l . (3.6.13)

With the definition of the mean velocity gradient, Equation (3.1.13), we can eliminate the nodal velocities above. As

a result, we can compute ‘yIfrom the following expression:

YI=rI–~BiI xiJ rJ . (3.6.14)

The difference between the hourglass-base vectors rI and the hourglass-shape vectors ‘yI is very important.

They are identical if and only if the quadrilateral is a parallelogram. For a general shape, rI is orthogonal to BjI
while yl is orthogonal to the linear velocity field u y. while rI defines the hourglass pattern, II is necessary to

accurately detect hourglassing. Equation (3.6. 14) is simple enough for the quadrilateral that it can be written

explicitly as

~1=*

‘2(Y3 ‘y4)+x3b’4 ‘Y2)+X4(Y2 ‘Y3)

x3(yl–y4)+ x4(y3–yl) +xl(y4–y3)

x4(yl–y2) +xl(y2–y4) +x2(y4–yl)

LX,(YS‘Y2)+XZ(Y, ‘Y3)+X3(Y2 ‘YI)

(3.6.15)

For the purpose of controlling the hourglass modes, we define generalized forces Qi, which are conjugate to ~i so

that the rate of work is

‘g= Qiqi .
U iI fi~ (3.6.16)
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for arbitrary Ui]. Using Equation (3.6. 12), it follows that the contribution of the hourglass resistance to the nodal

forces is given by

(3.6.17)

Two types of hourglass resistance are used in SANTOS: artificial stiffness and artificial damping. We express

this combination as

In terms of the tunable stiffness (K) and viscosity (E) factors, these resistances are given by

(3.6.18)

(3.6.19)

Note that the stiffness expression must be integrated, which further requires that this resistance be stored in a global

array.

Observe that the nodal antihourglass forces of Equation (3.6.17) have the shape of 71 rather than rl. This fact is

essential since the antihourglass forces should be orthogonal to the linear velocity field, so that no energy is

transferred to or from the rigid body and uniform strain modes by the antihourgla.ssing scheme.

We would prefer to use only hourglass stiffness and, in fact, this is what is used for the plane strain case (K = .05

and s = 0.0). Unfortunately, the nonstrain terms in the Petrov-Galerkin formulation give rise to an instability which

is best stabilized using hourglass viscosity. For the axisymmetric case, values of K = .01 and E = .03 are used.

3.7 Dynamic Relaxation

As a solution strategy for quasistatic mechanics problems, dynamic relaxation involves first converting the

equilibrium equations into equations of motion by adding an acceleration term, secondly, introducing an artificial

damping, and finally, integrating forward in time from initial conditions until the transient dynamic response has

damped out to the static result with equilibrium satisfied. To produce the transient dynamic problem, an acceleration

term is added to the equilibrium Equation (2.3.1), thus becoming

a2u = (-Jdiv T+pfb –r—
a72

(3.7.1)

where u is the displacement of the material point and r is a spatially varying density selected to minimize the number

of iteration steps needed to reach equilibrium. ‘Ehe temporal quantity ~ is a pseudo-time scale connected with the

dynamic relaxation process” but distinct from real time t. The acceleration term is discretized the same way that it

would be in a true dynamics calculation. This leads us to write the discrete dynamic system as
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(3.7.2)

where M(r) is the mass matrix, q = u(t) , f 1~ is the divergence of the stress field, and f ‘m is the vector of

prescribed body forces and surface tractions. The mass matrix is computed using the fictitious density, r. This

density is different for each element, and it is selected such that the element has the same transit time for a

dilatational wave as every other element in the mesh. This process is called mesh homogenization, and it is effective

in minimizing the number of iterations for convergence.

~ = f ~m. A new solution is initiated by incrementing theAt time tn, equilibrium is satisfied such that fn

load to its value at time tn+l. In general, equilibrium will not initially be satisfied so that the force imbalance will be

represented by the acceleration term:

EXT _ f n~M(r) q = fn+l . (3.7.3)

Central difference expressions are introduced first for the acceleration in terms of the velocity, u and then for

the velocity in terms of the displacement, u. The resulting equations are

(tiT+& = UT+ AzM(r)–l f$xT –f7mT
)

U~+A~ = UT + Ati=+AT . (3.7.4)

The dynamic relaxation algorithm is based on these two expressions (Equation (3.7.4). It is a convenient time to

introduce the concept of the equilibrium iteration. As the load is incremented to a new value at tn+l, the iteration

process begins with calculation of the internal forces f lm and the calculation of the force imbalance. If the force

imbalance is greater than a user-specified tolerance, then another iteration through the solution sequence is required.

When equilibrium is reached the iteration process stops and new loads are calculated for the next time increment.

The central difference expressions above must be solved at each iteration with the appropriate amount of damping to

reach the quasistatic solution. These equations take the following form for iteration, i, with the self-adaptive

damping parameter, &

u (‘+l~+AZ = SUi~ + A76M(r)-1 fgxT –fTmTi
)

u i+l
~+A~ = uit + Atiit+A~ . (3.7.5)

Every iteration i leads to a new trial configuration and trial stress state. The path in solution space traced out by

the steps is artificial; it is a by-product of the dynamic relaxation, as is the advance in time z. The trial states i

represent equilibrium iterations. Figure 3.7.1 depicts the process in a multidimensional solution space of the nodal

point coordinates. The point n is an equilibrium solution and the point n+l is the equilibrium state being sought.
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Figure 3.7.1. A model equilibrium iteration sequence in a multi-dimensional configuration space of nodal point

positions developed with dynamic relaxation showing convergence at load step n+l. The straight
line path from n to the last step calculated from dynamic relaxation is the interval over which the

stress is evaluated using the real time step At.

The curved path between n and n+l traces out the true solution. The spiral path marked with the tics and

parameterized by steps in ~ is the sequence of trial states generated by the dynamic relaxation method. The straight

line from n to the last step calculated from dynamic relaxation is the interval over which the stress is evaluated using

the real time step At. This is an important point in the implementation of the dynamic relaxation scheme. The

internal forces f lm are re-evaluated at each step i using the trial geometry and when equilibrium is achieved; a

straight line approximation to the true path between n and n+ 1 is used for the constitutive model calculations. This

scheme uncouples the path dependence and real-time dependence of the constitutive behavior from the arbitrary

sequence of trial states generated by the dynamic relaxation method.

Convergence is based on achieving an acceptably small equilibrium imbalance. Because the converged solution

is a straight line approximation, the true state at n+l will not be found, but a nearby equilibrium state will be found

nonetheless. This truncation error is common to the more conventional finite element methods and can be reduced

by decreasing the time step size. The only questions remaining are how to select the variable density r, the pseudo-

time step At, and the damping parameter 6 to find a converged solution in the minimum number of steps.

The performance of dynamic relaxation is tied to the minimum natural frequency ~ and the maximum natural

frequency col of the discrete equations. The damping per cycle is frequency dependent. For a given damping factor

6, the decrease in amplitude per cycle is greatest for the lowest frequency component. The damping is then chosen

to provide critical damping for the lowest frequency. By looking at the characteristic equation associated with the
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iteration matrix which relates the velocities and displacements at step n+ 1 to those at step n, the expression for the

damping parameter, 6, is found to be

s = 1- (4cooml)/ ((OO+CO])2. (3.7.6)

The allowable range on 6 is (O,1). A stability analysis on this set of explicit equations produces a critical

pseudo-time step given by

ATC=2/@o+col)@ . (3.7.7)

If the problem is linear so O. and 01 are fixed, then the number of time steps, N, required to reduce the

vibration amplitude by a factor often is

N= 1.15 (co1/coo) . (3.7.8)

From this equation, it is seen that any effort to reduce the ratio o 110)0speeds convergence.

From the linear problem and a uniform mesh of dimension Ax, the maximum frequency Q 1 is given by

C01=2CIAX=21AT . (3.7.9)

In this expression, c is the dilatational wave speed given by

c=(k+2p)/r (3.7.10)

and r is the pseudo-density used for the computation of the fictitious mass. If we substitute the quantity 2/A~ fom 1

and remember that 01>> coo, then the expression for the damping parameter becomes

8=1-200AT . (3.7.11)

The fimdamental ilequency O. is continuously estimated using an approximate value found using the Rayleigh

Quotient. At each iteration i in the dynamic relaxation scheme, a new estimate (~o)i is computed as

“o,=-
(3.7.12)

‘ where K is a diagonal stiffness matrix whose jti component is computed from

f.jmT – f;-yTK.i=l (3.7.13)
ATU:-l “

With each estimate of the fundamental frequency, a new value of the damping is computed. This has the virtue

that the lowest active mode will be found in the event that the fimdamental mode is not participating (Underwood,

1983).
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3.8 Convergence Measures

When an iterative method, such as dynamic relaxation, is used to solve for static equilibrium, some criterion

must be used to determine when the estimated solution is sufficient] y close to the actual solution. Convergence of

the equilibrium iteration process is achieved when a measure of the problem force imbalance reaches a value less

than or equal to a user-supplied error tolerance. The force imbalance is the sum of the external and internal nodal

forces which at equilibrium should sum to zero.

In SANTOS, two different convergence error measures are available to the analyst. The first error measure is

based on satisfying the following inequality:

Rj
— < TOL
Fn

(3.8.1)

where II0II denotes the Lz norm of a vector, Rj is the residual or imbalance force vector at iteration j, and Fn is the

external force vector at step n which is composed of applied tractions, body forces (gravity forces), thermal forces,

and the reactions at nodes where zero displacement boundary conditions are applied. Equation 3.8.1 is a measure of

how close the problem is to a state of equilibrium. The quantity TOL is input by the analyst as a means of

identifying the relative imbalance the analyst is willing to accept in the solution. In SANTOS, TOL is set by default

to a value of 0.5 percent. This error is called the GLOBAL CONVERGENCE measure and is the default error

measure.

The second error measure implemented in SANTOS is based on satisfying the error tolerance on a node-by-node

basis. This error measure is called the LOCAL CONVERGENCE measure. The rationale for this criterion is that

what is an acceptable force imbalance in one portion of the problem may be unacceptable at another location. For

example, further reduction of a set of force residuals acting in a region of the problem where the elements are large

and stiff may produce only a small change in the element stresses in this region. If, however, the same set of force

residuals was present at a different location where the element sizes were much smaller and the material was much

more flexible, further reduction of the residuals could produce a large change in the element stresses. To address

these concerns, the LOCAL CONVERGENCE error measure is included as an option.

The error measure for each component i and iteration j of the residual force vector is defined as:

(3.8.2)

where R ~ is the residual or imbalance force, F; is the external force, f j is the internal force, and f ~in is the

minimum internal force in an element produced by a reference hydrostatic stress state specified by the analyst. The

minimum internal force is introduced to ensure that the denominator is never zero and to prevent elements with

negligible stresses from controlling the convergence of the problem. The internal force contribution is summed over
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all the elements, e, connected to node i. This error measure is satisfied when each component of the force vector

satisfies the criterion.
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4.0 CONSTITUTIVE MODELS

One of the primary reasons for developing SANTOS was to take advantage of the many state-of-the-art features

available in PRONTO and adapt them to quasistatic mechanics problems. One of those features is the flexible

material model interface which allows a constitutive model to be added to the code with minimal effort. The

constitutive developer does not have to be familiar with the internal workings of SANTOS but only needs to modify

a few well documented subroutines to add a new material model. The material model implementation requires the

user to provide entries in a few data statements to define the limits of the internal data structure. The code also

requires the constitutive developer to provide estimates of the initial dilatationrd and shear moduli so that the

program can compute an initial stable time step. The material model may contain internal state variables that define

the state or evolution of the material. The implementation requires that the developer provide names and any

required initialization for the internal state variables. The internal state variable names for each material currently

implemented are provided in the User Guide section. These quantities may be individually selected for output to the

plotting data base. The final changes to the material model subroutines require the developer to provide names for

any necessary input quantities such as Young’s modulus or Poisson’s ratio. The input names for the material models

currently implemented are given in the User Guide section. The code currently contains twelve continuum material

models with more models being developed as our applications require them. The models range from purely elastic

behavior to time-dependent viscoplastic response.

SANTOS utilizes an indirect solution technique which can require hundreds of thousands of calls to the

constitutive model during a complex analysis. Thus, efficient implementation of the constitutive model is a primary

concern. Considerable effort has gone into writing each material model subroutine such that the routine vectorizes

on a vector supercomputer. The material model routine is written in terms of the unrotated Cauchy stress, o, and the

deformation rate in the unrotated configuration, d. The basic assumption is that the deformation or strain rate is

constant over the step. The deformation rate that is available to the constitutive subroutine is the mechanical strain

rate, i.e., any thermal strain rate contribution to the total strain rate has already been removed. During each iteration,

the latest kinematic quantities are used to update the stress. Stresses written to the plotting data base are rotated to

the current configuration.

4.1 Integration of the Rate Equations

The constitutive models are written in a rate form and must be integrated forward at each time step. In

- SANTOS, a forward Euler or a backward Euler integration of the rate equations, is used for many of the constitutive

models. The forward Euler integration assumes that

f ‘+* =fn +f(fn)At (4.1.1)

where f is the quantity to be integrated, n refers to the current step for which values off are available and n+ 1 refers

to the next step for which values off are being sought. The quantity f is defined using the known quantities at step

n, and At is the time step increment. l%e forward Euler scheme is simple and computationally efilcient but is

conditionally stable. The time step size allowed is controlled by a stability criterion that varies with each material

model.
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The backward Euler integrator has the following form

fn+l
= f“ +f(fn+l)At (4.1.2)

where the term f is evaluated at step n+ 1. This solution method is implicit and therefore requires some type of

iterative method such as Newton-Raphson to solve for f‘+ 1. The method is computationally more demanding than

forward Euler, but the scheme is unconditionally stable. The only restriction on the time step size is accuracy of the

solution.

The time-dependent material models implemented in SANTOS, such as the creep and viscoplastic models, use

the forward Euler operator even though the method is conditionally stable. The implementations rely on

subincrementation within the global time step, At, to maintain numerical stability. In most instances, the user-

specified global solution step, At, is larger than the time step needed for accuracy and stability. Economic

considerations do not allow the user to take the number of global solution time steps needed to ensure an accurate

and stable solution; therefore, the global solution time step is broken into subincrements for integrating the

constitutive model. The size of each subincrement adapts to the change in stress occurring within the global solution

step. So although this subincrementation process maintains the direction and magnitude of the total strain increments

as constant for the global step, it allows the stress components to change over the step. That is, after each

subincremental time step, the stresses and inelastic strain rates as well as the critical time step are updated before

computing the solution for the next subincrement.

The implementation of this algorithm is designed to take advantage of the vector architecture of the Cray

computer. The constitutive model is called with the total strain rates for the step and the stress from the previous

step. Processing is done on a block of 64 elements, one block at a time. There are two FORTRAN loops involved in

this approach. The outer loop is an implicit loop that adapts the size of the subincrement as the stresses change

within the global solution step. This loop is not vectorizable. The inner loop computes the stresses for a block of

NE elements, with NE having a maximum of 64. This loop is vectorizable. An additional feature of this approach,

which is unique to indirect solution schemes, is that each element block may have its own unique number of

subincrements. Thus, the amount of computation is minimal for elements in regions where the stress is small and the

computational effort is concentrated where the stress is largest.

The key to the scheme is the accurate determination of the stable time step which is accomplished using the

work of Cormeau (1975) who developed a method for analytically determining the stable time step for a particulw

constitutive model. To determine the analytical expression for the stable time step size, we introduce the following

linearized differential equation

-L (s–at)
‘=ot+a~ t

(4.1.3)

where the quantity, CSt,represents the deviatoric stress at time t. This equation represents a first-order Taylor series

expansion about the stress state at time t. This equation can be rewritten as
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where y is a column vector containing the stress components and A is a square matrix defined by

A= [1$(6).t
A stability analysis of the forward Euler integrator shows that the time interval is stable if At<& where

km is the largest eigenvalue of the square matrix A. Once we have the analytic expression for the stab~~me step,

we can write an et%cient, vectorized material model subroutine for implementation into SANTOS.

4.2 Adaptive Time Stepping

One important feature available for the time-dependent material models in SANTOS is the capability to do

adaptable time stepping. This feature is desirable when the mechanics of the problem dictate small time steps during

the early stress transient, but the stress reaches a steady state at later times and the analyst desires to use larger time

steps. If we consider a function f(t) which is analytic in the neighborhood of a point t:

1-12f“(t)+~f(t+h) = f(t) +hf’(t)+~ h3 f“’(t)+... (4.2.1)

The forward Euler method is obtained by taking the first two terms of the series:

f(t+h)= f(t)+ hf’(t)+O(h2) (4.2.2)

where O(h2) is the error associated with the truncation. The above equation can be rewritten in a slightly different

form:

f(t+h) = f(t) +hf’(t)+$f’’(~) (4.2.3)

where ti<~<t+hor

(4.2.4)

and ti < &<ti+ 1 where the last term is the truncation error per step.

If it is assumed that f“ is fairly constant over the iti step interval, an estimate of the truncation error ET at the iti

step can be obtained from

where f“ is evaluated at&= ti.

(4.2.5)
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The criterion for the time step control is

(4.2.6)

t+ ,,
where E is some small number. Replacing ETi in the above expression with ~ $ and solving for the time step, h,

gives the following expression

K~<2&lfil

f“il “
(4.2.7)

In SANTOS, we choose to control the time step with the effective stress so that the above equation becomes

(4.2.8)

The accuracy of the method depends on the value of & chosen. For example, we might restxict the error to 1

percent of ~i at the beginning of the step so c would be selected as 0.01. Experience has shown that values of E in

the range .01 -.02 produce acceptable results.

4.3 Basic Definitions and Assumptions

The constitutive models implemented in SANTOS are described in the following sections. The fundamental

assumptions used in developing the models are presented along with some details of their implementation. The

nomenclature used for the descriptions will be presented first. Several of the models have their descriptions taken

from other sources, and we will follow the nomenclature of those sources where appropriate. Throughout the report,

components of tensors will appear using indicial notation, ~ij,while equivalent scalar quantities appear with a bar,

6.

The material model development makes the fundamental assumption of an additive strain rate decomposition of

the total strain rate components, dij, into elastic and inelastic parts.

dij = dijel + dijin .

The resulting stress rate, 6ij, is determined from the elastic part of the strain rate using Hooke’s law

(4.3.1)

(4.3.2)

where C is a 4* order tensor of Hookean elastic constants. The stress rate can be broken into two independent parts,

representing volumetric and deviatoric behavior. The volumetric behavior is assumed for most material models to be

purely elastic with the volumetric strain rate, dkk, linearly related to the pressure, p, through the relation
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—=Kdkk~=~y (4.3.3)

where K is the bulk modulus of the material. Because the strain rates are assumed constant over the step, the

pressure at the end of the step can be easil y found from the expression

Pn+l ‘Pn ‘KdkkAt

where At is the time step size and pn is the pressureat the beginning

(4.3.4)

of the step. There are material models in

SANTOS that do not have a linear bulk response. These exceptions include the volumetric creep model, soil and

crushable foam model, and low density foam model. The particular volumetric response for each of these models

will be discussed in each individual section.

The deviatoric stress rate, Sij, is computed from the relation

3 ij =&ij–p&ij (4.3.5)

where ~ij is the Kronecker delta. If we rewrite the equation for the stress rate in terms of the deviatoric stress part,

we have

$ij = @(&ij – ~ijn
)

(4.3.6)

where &ij is the deviatoric component of the strain rate, dij. The deviatoric strain rate components are similarly

calculated.

&ij = dij –~dti~ij . (4.3.7)

In most of the material models currently implemented in SANTOS, we assume von Mises flow, and we can define

the equivalent von Mises stress, G =
{T

2s.. . . and the equivalent deviatoric strain rate, ; =
r

2“
2 1 IJJ ~cijt$j . It is

convenient to introduce the idea of an elastic “trial” stress state for the end of the time step. This stress state is used

in the plasticity models to determine if yielding will occur during the step, and it is also used for the time-dependent

models. Given the deviatoric stress state at the beginning of the step, Sn, the elastic “trial” stress state
lJ

for the end of the step is

Sijtr = Sijn +2@ijAt (4.3.8)

where v is the shear modulus, At is the time step increment, and &ij is the deviatoric strain rate. If yielding does not
n+loccur during the time step, then the trial stress becomes the final stress state at S.. .
lJ
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4.4 Elastic Material, Hooke’s Law

A linear elastic material is defined using Hooke’s Law. In a rate form, this is written as

blj =L(dkk)~ij + z~dij (4.4.1)

where L and w are the elastic Lam6 material constants. The stress rate equation is integrated forward using the

backward Euler integrator. The model has no internal state variables.

The PROP array for this material contains the following entries:

PROP(1) - Young’s modulus, E

PROP(2) - Poisson’s ratio, v

PROP(3) - %

PROP(4) - 2y .

4.5 Elastic Plastic Material with Combined Kinematic and Isotropic Hardening

The elastic plastic model is based on a standard von Mises yield condition and uses combined kinematic and

isotropic hardening. Isotropic hardening is the behavior where the radius of the yield surface grows equally in all

directions due to plastic straining. Kinematic hardening is the behavior where the radius of the yield surface remains

constant, but the center of the yield surface translates in the direction of the plastic strain rate. In this discussion of

the elastic plastic material model, .we assume that the material is yielding and that plastic straining will occur. In the

event that yielding does not occur, the material behavior is elastic and the stress is computed using Hooke’s Law as

described in Section 4.4. This model is widely used in many finite element computer programs, and the current

derivation is taken from Taylor and Flanagan ( 1987).

Some definitions and assumptions are outlined here. Referring to Figure 4.5.1, which shows the yield surface in

deviatoric stress space, we define the backstress (the center of the yield surface) by the tensor, et.

If 6 is the current value of the stress, we define the deviatoric part of the cument stress by

S=+(T5 .

We define the stress difference measured by subtracting the backstress from the deviatoric stress by

(4.5.1)

(4.5.2)

The magnitude of the stress difference, R, is defined by

R’lq=lm (4.5.3)
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Figure 4.5.1. Yield surface in deviatoric stress space.

where we denote the inner product of second order tensors by S:S = Sij Sij. Note that if the backstress is zero

(isotropic hardening case), the stress difference is equal to the deviatoric part of the cument stress, S.

The von Mises yield surface is defined as

f(CJ)=@=K2 ,

The von Mises effective stress, 5, is defined by

r
~= ;6:6 .

Since R is the magnitude of the deviatoric stress tensor when cx= O, it follows that

[
R= fiK=” ~~ .

me normal to the yield surface can be determined from Equation (4.5.4)

(4.5.4)

(4.5.5)

(4.5.6)

(4.5.7)

We assume that the strain rate can be decomposed into elastic and plastic parts by an additive decomposition

d = del+-(lP1 (4.5.8)
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and assume that the plastic part of the strain rate is given by a normality condition

@ . ~

when the scalar multiplier, y, must be determined.

A scalar measure of equivalent plastic strain rate is defined by

which is chosen such that

(4.5.9)

(4.5.10)

(4.5.11)

The stress rate is assumed to be purely due to the elastic part of the strain rate and is expressed in terms of

Hooke’s law by

d=hrdeb+2pde1 (4.5.12)

where k and ~ are the Lame constants for the material.

Below, we develop the theory for the cases of isotropic hardening, kinematic hardening, and combined

hardening separately so that the reader can see the details for each case.

4.5.1 Isotropic Hardening

In the isotropic hardening case, the backstress is zero and the stress difference is equal to the deviatoric stress, S.

We write a consistency condition by taking the rate of Equation (4.5.4)

f(@=2KK . (4.5.13)

By consistency we mean that the state of stress must remain on the yield surface at all times. We use the chain rule

and the definition of the normal to the yield surface given by Equation (4.5.7) to obtain

af . af

‘(o) ‘Xi:o = z ‘6

and from Equations (4.5.3) and (4.5.4)

Combining Equations (4.5. 13), (4.5. 14), and (4.5.15)

(4.5.14)

(4.5.15)
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@r=R . (4.5.16)

Because S is deviatoric, S:6 = S:$ and

s“=$(+s’’)=f$]=:=~e

Then Equation (4.5. 16) can be written as

‘=IF%I%”

(4.5.17)

(4.5.18)

where H is the slope of the yield stress versus equivalent plastic strain (~ versus Ep’ ), This is derivable from the

data from a uniaxial tension test as shown in Figure 4.5.2.

The consistency condition, Equation (4.5. 16) and Equation (4.5. 18), result in

We define the trial elastic stress rate &m by

“m=Cd6

Figure 4.5.2.

(4.5.19)

(4.5.20)

I

I H’

H’=
E E’

E-E’

TR1-&348-8-o

Conversion of data from a uniaxial tension test to equivalent plastic strain versus

von Mises stress.
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where C is the fourth order tensor of elastic coefficients defhwd by Equation (4.5.12). Combining the strain rate

decomposition defined in Equation (4.5.8) with Equations (4.5.19) and (4.5.20) yields

(4.5.21)

We note that because Q is deviatoric, C:Q = 2P Q and Q:C:Q = 21.L. Then using the normality condition,

Equation (4.5.9), the definition of equivalent plastic strain, Equation (4.5.10), and Equation (4.5.21)

2HIy=Q:6tr– Y2Y
3

(4.5.22)

and since Q is deviatoric ( ~ btr = 2V Q: d ), we can determine y from Equation (4.5.22) as

y = (1+14’/3~)
Qd . (4.5.23)

The current normal to the yield surface, Q, and the total strain rate, d, are known quantities. Hence, from

Equation (4.5.23), ~ can be determined which can be used in Equation (4.5.9) to determine the plastic part of the

strain rate which, with the additive strain rate decomposition and the elastic stress rate of Equations (4.5.8) and

(4.5. 12), completes the definition of the rate equations.

We still must explain how to integrate the rate equations subject to the constraint that the stress must remain on

the yield surface. We will show how that is accomplished in Section 4.5.4.

4.5.2 Kinematic Hardening

Just as before with the isotropic hardening case, we write a von Mises yield condition but now in terms of the

stress difference

f(~) =+&~=K2 . (4.5.24)

It is important to remember that a and ~ are deviatoric tensors. The consistency condition is written for

kinematic hardening as

f(g) = o (4.5.25)

because the size of the yield surface does not grow with kinematic hardening; therefore, k = O. Using the chain rule

on Equation (4.5.25)

(4.5.26)
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and

(4.5.27)

Combining Equations (4.5.26) and (4.5.27) and assuming that R # O

Q:&=() (4.5.28)

or

Q:(S–&)=O . (4.5.29)

A geometric interpretation of Equation (4.5.29) is shown in Figure 4.5.3, where it can be seen that the backstress

moves in a direction parallel to the normal to the yield surface.

We must now decide how &is defined. Recall that for the isotropic hardening case, Equation (4.5.29),

●

✍✎

✍✎

‘1
/

I

I

I

I

I

1

5 ,1

TR1-&346-9-o

(4.5.30)

Figure 4.5.3. Geometric interpretation of the consistency condition for kinematic hardening.
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The kinematic hardening condition assumes that

&+dpl+yQ (4.5.31)

where @is a material parameter. Equation (4.5.31) combined with Equation (4.5.29) gives a result identical to the

isotropic hardening case, Equation (4.5.30), if@ is chosen to be z H’.
3

Hence, either Equation (4.5.30) or (4.5.31)

gives us a scalar condition on & . Note that both of these are assumptions and must be shown to be reasonable. Of

course, experience with material models based on these assumptions has proven them to be reasonable

representations of material behavior.

Using Equation (4.5.30), the strain rate decomposition, Equation (4.5.8), and the elastic strain rate, Equation

(4.5. 12), in the consistency condition for kinematic hardening, Equation (4.5.29) gives

Taking the tensor inner product of both sides of Equation (4.5.32) with Q gives

Q:; H’y Q= Q:(6w -2wy Q) .

Again, because Q is deviatoric; C:Q = 2L Q and Q:C:Q = 2v.

Solving Equation (4.5.33) for y gives

y=(l+IL3@
Qd

(4.5.33)

(4.5.34)

which is the same result as was obtained for the isotropic hardening case.

4.5.3 Combined Isotropic and Kinematic Hardening

For the combined hardening case, we define a scalar parameter, & which determines the amount of each type of

hardening. We require that

Ospsl . (4.5.35)

Figure 4.5.4 illustrates the uniaxial response which will be computed for ~ for different choices of ~. When

~ = Owe have only kinematic hardening, and when P = 1 we have only isotropic hardening.
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and

TRI-6348-1o-o

Figure 4.5.4. Effect of the choice of the hardening parameter, & on the computed uniaxial response.

“ =~H’@l (l–~)=f H’@(l–j3) .
a3

As before, we write a consistency condition

- or
—

(4.5.36)

(4.5.37)

(4.5.38)

(4.5.39)

Using the elastic stress rate and the additive strain rate decomposition with Equation (4.2.56) and taking the tensor

product with the normal, Q

Q6”-yQ:CQ-Q[$ry (GP)]Q=Q[&@Y]Q . (4.5.40)
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Solving for -y

‘= (l+ F1/3p)
Qd

which is the same result obtained for each of the independent cases.

We summarize the governing equations for the combined theory:

6= C(d–dpl)=i#

R=P@@=l@u’

ti= (l-f@@’

/

(), elastic; f(~) < K2
dpl =

[IQ*plastic; f(~) 2 K*

Y=(l+ILW)
Qd

IQ=% $ ‘5’R “

(4.5.41)

(4.5.42)

(4.5.43)

(4.5.44)

(4.5.45)

(4.5.46)

(4.5.47)

4.5.4 Numerical Implementation

Our finite element algorithm requires an incremental form of Equations (4.5.41) through (4.5.43). Additionally,

we must have an algorithm which integrates the incremental equations subject to the constraint that the stress remains

on the yield surface.

The incremental analogs of Equations (4.5.42) through (4.5.44) are

Rn+l =Rn +@’AY

and

cxn+l=txn +(l-~)~H’AyQ e

(4.5.48)

(4.5.49)

(4.5.50)

where Ay represents the product of the time increment and the equivalent plastic strain rate (Ay = At ~).
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The subscripts n and n+ 1 refer to the beginning and end of a time step, respectively.

We also need an incremental analog to the rate forms of the consistency condition given by Equations (4.5.13),

(4.5.25), and (4.5.39). At the end of the time step, we insist that the stress state must be on the yield surface. Hence,

the incremental consistency condition is

~n+l +Rn+l Q=sn+l “

Equation (4.5.51) is shown graphically in Figure 4.5.5.

Substituting the definitions given by Equations (4.5.48) through (4.5.50) into the consistency

Equation (4.5.5 1)

[ 1[ Idcxn+(l-~)+H’AyQ + Rn+f~H’Ay = S#+l– Ay21.LQ] .

Taking the tensor product of both sides of Equation (4.5.52) with Q and solving for A’y

A7=+(l+J’/*) (l~~+d-R4-

(4.5.51)

condition of

(4.5.52)

(4.5.53)

Qn+l

TRI-6S4S-11-0

Figure 4.5.5. Geometric interpretation of the incremental form of the consistency condition for
combined hardening.
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It follows from Equation (4.5.53) that the plastic strain increment is proportional to the magnitude of the excursion

of the elastic trial stress past the yield surface (see Figure 4.5.6).

Using the result of Equation (4.5.53) in Equations (4.5.48) through (4.5.50) completes the algorithm. In

addition we can compute

AdP1= Q Ay (4.5.54)

and

(4.5.55)

The results of Equation (4.5.53) applied to Equation (4.5.48) show that the final stress is calculated by returning

the ehistic trial stress radially to the final yield surface at the end of the time step (hence the derivation of the name

Radial Return Method). Estimates of the accuracy of this method and other methods for similarly integrating the rate

equations are available in Krieg and Krieg (1977) and Schreyer et al. (1979) Note that the last term in Equation

(4.5.48) (the radial return correction) is purely deviatoric.

TRI-6348-12-O

Figure 4.5.6. Geometric interpretation of the radial return correction.
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The elastic plastic material model uses six internal state variables:

EQPS - equivalent plastic strain

RADrus - current radius of yield surface

ALPHA11 - 1,1 component of backstress in unrotated configuration

ALPHA22 - 2,2 component of backstress in unrotated configuration

ALPHA33 . - 3,3 component of backstress in unrotated configuration

ALPHA12 - 1,2 component of backstress in unrotated configuration.

Tiie PROP array for this material contains the following entries:

PROP(1)

PROP(2)

PROP(3)

PROP(4)

PROP(5)

*PROP(6)

*PROP(7)

*PROP(8)

*PROP(9)

*PROP( 10)

*PROP( 11)

- Young’s modulus, E

- Poisson’s ratio, v

- Yield Stress, cryd

- Hardening Modulus, H

-P

- 2p

- 3p

- l/(2v(l + H/3p)) (Note: H’= I-V(1 - EM))

-k

- 2p H/3

- 2(1 - ~)H’/3

4.6 Soils and Crushable Foams Model

The soils and crushable foams model in SANTOS is a direct descendant of the model developed by Krieg

(1978). One major difficulty with the original version of this material model which has confounded users is that

the pressure dependence of the yield stress is expressed in terms of J2, the second invariant of the stress tensor. We

have reformulated the model so that the yield stress is written directly in terms of the pressure. NOTE: this means

that old data must be converted.

The yield surface assumed is a surface of revolution about the hydrostat in principal stress space as shown in

Figure 4.6.1. In addition, a planar end capon the normally open end is assumed. The yield stress is specified as a

polynomial in pressure, p (positive in compression)

Gyd=%+alp+az p2 . (4.6.1)

The determination of the yield stress from Equation (4.3.1) places severe restrictions on the admissible values of

~, al, and a2. There are three valid cases as shown in Figure 4.6.2. First, the user may speci@ a positive ao, and

a 1 and a2 equal to zero as shown in Figure 4.6.2a. This gives an elastic-perfectly plastic deviatoric response, and

the yield surface is a cylinder oriented along the hydrostat in principal stress space. Second, a conical yield surface
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Figure 4.6.1. Pressure-dependent yield surface for the soils and crushable foams material model.

(Figure 4.6.2b) is given by setting a2 to zero and entering appropriate values of ao and al. The program checks the

user’s input to determine whether a valid (negative) tensile fracture pressure, P~, results from the input data. The

third case results when all three constants are nonzero and the program detects that a valid negative tensile failure

pressure can be derived from the data. This case is shown in Figure 4.6.2c. A valid set of constants for the third

case results in a parabola as shown in Figure 4,6.2c. We have drawn the descending portion of the curve with a

dashed line, indicating that the program does not use that portion of the curve. Instead, when the pressure exceeds

P*, the yield stress is held constant as shown at the maximum value.

The plasticity theories for the volumetric and deviatoric parts of the material response are completely uncoupled.

The volumetric response is computed first. The mean pressure, p, is assumed to be positive in compression, and a

yield function is written for the volumetric response as

op=P-fp(%) (4.6.2)

where fp(sv) defines the volumetric stress-strain curve for the pressure as shown in Figure 4.6.3. This function is

defined by the user with the restriction that the slope of the function must be less than or equal to the unloading bulk

modulus, ~, everywhere. If the user wishes the volumetric response to be purely elastic, he simply specifies no

function identification (e.g., FUNCTION ID = 0). The yield function, 4P, determines the motion of the end cap

along the hydrostat.
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Figure 4.6.2. Forms of valid yield surface which can be defined for the soils and crushable foams

material model.
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Figure 4.6.3. Pressure versus volumetric strain curve in terms of a user-defined curve, F(EV), for the soils and

crushable foams material model.
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The mean volumetric strain is updated as

n+l
&v = E? +At&v (4.6.3)

(where &v is the volumetric part of the strain rate &” =
)

~trd.

There are three possible regimes of the pressure-volumetric strain response. Tensile failure is assumed to occur

if the pressure becomes smaller (more negative) than Pfr. The quantity e~ is initialized to -P* by the program.

If tensile failure is detected, the pressure is set to -pfr. Remember, pressure is negative in tension! Failure by

monotonic tensile loading is shown in Figure 4.6.4a. As long as &vc Efi, the pressure will remain equal to -p~

If the volumetric strain exceeds Efr, a check is then made to SIX if

q<q (4.6.4)

where &u is the most positive (compressive) volumetric ‘strain previously experienced by the material, set initially to

zero by the program. If Equation (4.6.4) is satisfied, the step is elastic and

P
n+l =pn– KOAEv . (4.6.5)

This elastic response is shown in Figure 4.6.4b.

If Equation (4.6.4) is not satisfied, the volumetric response is along the curve defined by fp(&v) and

P
()

‘+1 = fp E:+*

and we set

n+l
&u =&v .

(4.6.6)

(4.6.7)

This response is shown in Figure 4.6.4c. Note, that if Equation (4.6.5) is used to determine p, we also drag e~ along

so that if we unload from the curve, fp(&v), we will fracture at the appropriate strain level as shown in Figure 4.6.4d.

The deviatoric part of the response is computed next and uses a conventional plasticity theory with radial return.

See Krieg and Krieg (1977). The trial elastic deviatoric stresses are computed as

Str=S,nt-2L Ate (4.6.8)

where & is the deviatoric part of the strain rate. The current value of yield stress is calculated using Equation

(4.6. 1), and the von Mises effective stress, 6, is computed as
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Figure 4.6.4. Possible loading cases for the pressure versus volumetric strain response using the soils and

crushable foams material mode.



J~=$s:s . (4.6.9)

The yield condition is checked to determine whether ~ < Oyd. If this is the case, the trial stress is the correct

deviatoric stress at the end of the time step, Sn+ 1 = S‘r. If yield is exceeded, a simple radial return is performed to

calculate the deviatoric stress at the end of the time step

Finally, the total stress is determined by

CT”+l =s ‘+1+pn+’ 5 .

(4.6.10)

(4.6.11)

The Soils and Crushable Foams model uses four internal state variables:

EVMAX - maximum compressive volumetric strain experienced (always positive),

EVFRAC - current value of volumetric fracture strain (positive in compression),

EV - current value of volumetric strain (positive in compression),

NUM - integer pointing to the last increment in the pressure function where the interpolate was

found.

The PROP array contains the following entries for this material:

PROP(1)

PROP(2)

PROP(3)

PROP(4)

PROP(5)

PROP(6)

- 2p

- Bulk Modulus, K

-W
- al

- a2

- Function ID number.

4.7 Low Density Foams

The low density foams model presented here was developed by Neilsen, Morgan, and Krieg (1987) and is based

on results from experimental tests on low density, closed-cell polyurethane foams. These foams having densities

ranging from 2 to 10 pounds per cubic foot have been proposed for use as energy absorbers in nuclear waste

shipping containers. Representative responses of closed-cell polyurethane foams for various hydrostatic, uniaxial,

and triaxial laboratory test conditions are shown in Figures 4.7.1 and 4.7.2. These results indicate that the ‘

volumetric response of the foam is highly dependent on load history. This implies that typical decompositions of

total foam response into an independent volumetric part and a mean stress (pressure) dependent deviatoric part are

not valid for this class of foam. Many “soil and crushable foam” models, including the other foam model described
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Figure 4.7.1. Foam volume strain versus mean stress for 6602 foam at various confining pressures.
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Foam volume strain versus mean stress for 9505 foam at various confining pressures.
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in Section 4.6, use such decompositions and hence are not valid for low-density, closed-cell polyurethane foams.

The model presented here reproduces experimental test responses more accurately for this class of foams than the

model in Section 4.6.

The experimental tests on which this model is based were performed by the Civil Engineering Research Facility

of the University of New Mexico with the results reported in (Neilsen et al., 1987). Foam samples were subjected to

static, compressive stresses during these tests. In most of the tests, air was trapped in the closed cells of the foams

and could not escape because the samples were jacketed with an impervious material. In this constitutive model, the

total foam response is decomposed into contributions from the skeleton and from air trapped in the closed cells of

the foam. The contribution of the air to the total foam response is dependent on the application. If the foam is used

in a vented application where the air can escape, the contribution of the air is zero and the foam and skeleton

responses are identical. If the foam is used in an application where the air cannot escape (such as a sealed shipping

container) the foam pressure is considered to be the sum of pressure carried by the skeleton and the air pressure.

That is,

Pf = Psk ‘Pair (4.7.1)

where pf and psk are the mean stresses (first invariants of the stress tensor divided by three) of the foam and

skeleton, respectively. The mean stresses and air pressure are assumed positive in tension. The air pressure is

determined from

POY

Pair =l+y–$
(4.7.2)

where y is the engineering volume strain (first invariant of the total strains), which is positive in tension and P. and 0

are model parameters. The parameter p. is the initial foam pressure (usually atmospheric pressure of 14.7 psi), and

$ is the ratio of the foam density to the polymer density from which the foam is produced.

Test data indicate that the skeleton response in any principal stress direction is independent of loading in any

other principal stress direction. Thus, Poisson’s ratio for the skeleton is equal to zero. Test data also indicate that the

yield strength of the skeleton in any principal stress direction can be expressed in terms of the engineering volume

strain and the second invariant of the deviatoric strains with the following relationship

{

A+ B(l+Cy); II’~>0
fi = (4.7.3)

B(l+Cy); It’~= O

where II; is the second invariant of the deviatoric strain tensor; y is the engineering volume strain as in Equation

(4.7.2); A, B, and C are constants determined from fitting Equation (4.7.3) to the laboratory data. Constants B and C

are determined from hydrostatic test data where U‘& is zero, and A is determined from any test where the loading is

deviatoric.

Numerical implementation of the model is as follows. Foam stresses and strains from the previous time increment

are saved. At the beginning of the next time increment, the old skeleton stresses are computed from the old foam
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stresses and the old air pressure. The strain rates for the new time increment are used to determine new strain

increments and trial elastic stress increments for the skeleton. These stress increments are added to the old skeleton

stresses to produce new trial stresses for the skeleton. The trial skeleton stresses are then rotated to principal stress

directions and compared with the yield stress determined from Equation (4.7.3). If yield occurs, the skeleton stresses

are set to the yield stress. If yield does not occur, the trial skeleton principal stresses become the final skeleton

principal stresses. The final skeleton stresses are obtained by rotating the final skeleton principal stresses back to the

unrotated configuration. .Then, the final foam stresses are obtained by adding the air pressure contribution for the

new strain state to the new skeleton stresses.

Input parameters for the model are the constants E, PO, +, A, B, and C, which are defined above. If the foam is

used in an application where the air can escape, PO should be input as zero. Otherwise, PO is the atmospheric

pressure at the beginning of the simulation.

There are no internal state variables for this model.

The PROP array contains the following entries for this material type:

PROP(1) - Young’s modulus, E

PROP(2) - A

PROP(3) - B

PROP(4) - C

PROP(5) - NAIR

PROP(6) - P.

PROP(7) - ~.

4.8 Elastic-Plastic Power Law Hardening Material

One of the more commonly used models in the SANTOS material library is the elastic-plastic combined

isotropic/kinematic hardening model. This model considers the hardening modulus to be a constant, which means

that the post-yield effective stress, ~, versus effective plastic strain, ~p, relationship is linear. For a large class of

important problems, a linear ~ versus ~p relationship may be adequate for the post-yield behavior over the range of

interest. This, however, places a severe restriction on the materials to be modeled or requires a priori information

about the expected strain levels in the problem so that an approximate hardening modulus may be selected to

produce a good approximation to the correct stress state based on the expected strain values. In addition, the strain

range of interest must be small (no large strain gradients) so that the linear hardening relationship is applicable.

However, there are classes of problems in which the linear approximation for plastic hardening is inadequate. A

constant hardening modulus cannot adequately describe the post-yield behavior to predict structural behavior in the

detail required. Determination of limit load response is an example of a class of problems for which linear hardening ‘

is inappropriate.

To overcome these restrictions, a variable hardening plasticity model (Stone et al., 1990) has been included in

SANTOS. The use of piecewise linear segments to represent the hardening curve was an initial consideration based

on the capability to match any material hardening behavior, but the resulting material modei subroutine was not
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not amenable to vectorization. Vectorization requirements limit the form of the model to a functional relationship

between effective stress and effective plastic strain. The form of the current implementation considers the post-

yield stress to be described by a power law involving the equivalent plastic strain with the option to include a

Liiders strain segment. The form of the hardening model was selected for its simplicity and ability to match the

post-yield behavior of many engineering materiats. The model has the form during a plastic loading process

~–crys = A(EP – &L)m (4.8.1)

where A and m are material constants, =P is the e@valent plastic strain, 6 is the effective stress, Cys is the initial

yield stress, and &L is the Luders strain or yield plateau strain. The use of brackets in the above equation denotes

the use of a Heaviside fimction. The fimction is zero until the arithmetic expression within the brackets becomes

positive, The material constants for this model can be determined from the measured stress versus strain data

through simple curve fitting techniques. By suitably choosing the material constants A and m, the form of the

model can represent either elastic/perfectly plastic or linear hardening material behavior in addition to the power

law hardening response. The proposed material model is strictly valid for isotropic hardening behavior where the

radius of the yield surface grows equally in all directions due to plastic straining.

Many engineering materials exhibit the phenomenon of Liiders straining. A typical stress versus strain curve

for such a material is shown in Figure 4.8.1. In reality, Liiders strain does not occur at constant stress but rather in

a serrated fashion. Each serration corresponds to the formation of a new Luders band. The serrations are small

enough that a constant stress representation is adequate. In common ferrous alloys, Luders strain as well as other.

yield point phenomena are generally associated with the interaction between solute atoms and dislocations.

The constitutive routine is entered with the stress state at the beginning of the step, S;, the strain-rate over the

step, iij, and the time step, At. An elastic trial stress, S;, is computed and a von Mises yield criterion is used to

–trcompute a trial effective stress, 6 , which is compared to the current radius of the yield surface. If the trial

effective stress is less than the radius of the yield surface, then the load step is elastic and the trial stress becomes

the final stress, S;+ 1. If the effectivestressis greater than the radius of the yield surface, then plastic straining

will occur over the step and the final stress state and plastic strain increment remain to be computed.

The expression for the stress at the end of the step is

(4.8.2)

. n+l
where we have used a backward Euler integration for the stress. The stress rate at the end of the step, Slj , is

computed as follows

s“ ““” ““:+1 = 2~(&g – ‘Pij ) (4.8.3)

where i ,, are the components of plastic strain.
PIJ
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Stress versus strain curve for a typical ferritic steel exhibiting Luders strain.

For von Mises flow, we can write the above as

where y is a scalar quantity.

“n+l .Substituting the above expression for S.. n+l
lJ

mto the expression for S.. results in
lJ

S;+l
S;+l =S~ +2@ijAt–3~~AY

0

(4.8.4)

(4.8.5)

where Ay = yAt. The first two expressions on the right-hand-side of the equation define the trial stress S~~ so that the

final expression becomes

(4.8.6)
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We make use of the following identity

S:+l s~
=—

~n+l @

to get the final expression for the stress at the end of the step

(4.8.7)

(4.8.8)

The plastic strain increment Ay, is the only unknown in the equation. To solve for the plastic strain increment,

we must go back to our expression for the yield function. Combining the yield function with the expression for

S~+l and making use of the identity, we get

‘tr –3p.@=oys +A(~~ +Ay– EL)mG (4.8.9)

which is solved for A? using Newton Raphson iteration. The computed value of AT is substituted back into the

expression for S ‘+1, Equation (4.8.8).
lJ

The bulk response is assumed to be linear elastic. The pressure at the end of the step is calculated using the

volumetric strain rate, dkk, through the relation

P ‘+1 = Pn +KdMAt (4.8.10)

where K is the bulk modulus of the material, At is the time step size, and pn is the pressure at the beginning of the

step. The stress from the deviatoric and bulk responses are combined to give the final stress state.

The power law hardening material uses two internal state variables:

RADIUS - current radius of the yield surface

EQPS - equivalent plastic strain.

The PROP array for this material contains the following entries:

PROP(1)

PROP(2)

PROP(3)

PROP(4)

PROP(5)

PROP(6)

* PROP(7)

* PROP(8)

* PROP(9)

Young’s modulus, E

Poisson’s ratio, v

Yield Stress, CJyS

Hardening constant, A

Hardening exponent, m

Liiders strain, &L

2~

3p

L
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4.9 Power Law Creep Material Model

The power law creep material model described here is commonly used to model the time-dependent behavior of

metals, brazes, or solders at high homologous temperatures as well as the time-dependent behavior of geologic

materials such as salt. The model is cast as a conventional power law secondary creep model of the form

(4.9.1)

where 6 is the effective deviatoric stress, A and m are material constants, El is the absolute temperature, R is the

( )universaJ gas constant 1.987* , andQis the activationenergy.

We choose to write the expression for the deviatoric stress at the end of the step as

s
()

~+1 =S~ +Sij S! At

where we have used a forward Euler integration for the stress. We can write the stress rate at step n as

‘ij = 2Y(~ij – ‘Cij )

where ECij are the creep strain rate components. The creep strain rate components for von Mises flow are

(4.9.2)

(4.9.3)

(4.9.4)

where EC is the effective or equivalent creep strain rate. Substituting into the expression for the stress rate gives

(“2Aex’(%Fm-lso5:=2~&ij_2 (4.9.5)

where ~ is evaluated at step n. The stress rate is computed and stored as a state variable for use during step n+l.

Numerical analysis of the forward Euler operator shows that the method is conditionally stable. It is possible to

calculate an estimate of the critical time step for stability of the forward Euler operator based on the form of the flow

potential and the elastic constants (Cormeau, 1975). Following procedures outlined in Cormeau (1975), the critical

time step for stability is calculated to be

AtSt <
4(1+U)

()

-Q ~=m-l3EA exp —
R@

(4.9.6)

where E and u are Young’s modulus and Poisson’s ratio, respectively. Accuracy of the method is assured if the time

steps are suftlciently small, but the stable time step does not guarantee an accurate solution. However, our

experience with the method has shown that the solution obtained using Atst is indeed accurate. The standard power
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law secondary creep model is requested in SANTOS by using the material name POWER LAW CREEP while the

adaptive time-stepping version is requested by using the name ADAPTIVE PL CREEP.

The volumetric behavior of the material is assumed to be linearly elastic as shown below

P‘+1 = pn +KdkkAt (4.9.7)

where K is the bulk modulus, d~ is the volumetric strain rate, At is the time step size, and pn is(4.9.6)

the pressure at the beginning of the step. The stress from the deviatoric and bulk responses is combined to give the

final stress state for the material.

The power law creep material uses a single state variable:

EQCS - equivalent creep strain.

The PROP array for this material contains the following entries:

PROP(1) - 2p

PROP(2) - K

PROP(3) - A

PROP(4) - m

PROP(5) - ~ if isothermal or ~ if not.

4.10 Thermoplastic Material Model

This material model represents the behavior of an elastic material with temperature-dependent material

constants. Both Young’s modulus and Poisson’s ratio are allowed to vary with temperature. The values of Young’s

modulus and Poisson’s ratio at the beginning (step n) and end (step n+ 1) of the time step are stored as state variables.

The relationship between the property value and temperature is specified using a FUNCTION definition.

We will choose to separate the stress and strain behavior into bulk and deviatoric response. The resulting

equation for the elastic deviatoric stress response is

(4.10.1)

where the shear modulus ~ is a function of the temperature, @n+ 1, at the end of the step. For our numerical

implementation, we will cast the problem in an incremental form. The stress at the end of the step now becomes

()S~+l =S; +Sij Sfi+l At . (4.10.2)



We choose to write the stress rate term, Sij,as

(4.10.3)

(with the expression for ~ @“+l ) defined as

pee”+’)-+”)
+“++ *t . (4.10.4)

This definition for the stress increment is neither a pure forward or backward Euler representation but a hybrid
method where we choose to use the total strain at the beginning of the step along with a backward difference for

#

@(@n’l) . If we employ the fact that E; =+,

()

we can write the final expression for the deviatoric stress as
2p @

s ;+1=s; [1+“+1)’
(k+2~ @n+l “ijAt .

V(e”)
(4.10.5)

The temperature-dependent elastic bulk response is computed in a similar fashion. The equation for the bulk

response at step n+ 1 is

O;:l (}= 3K (3”+1 ~+1 . (4.10.6)

We cart write the above equation in an incremental form that is more suitable for numerical implementation.

The stress from the deviatoric and bulk responses is combined to give the final stress state.

The thermoplastic material uses the following state variables:

YMO -

YMl -

XNuo -
XNul -

Young’s modulus at the beginning of the step

Young’s modulus at the end of the step

Poisson’s ratio at the beginning of the step

Poisson’s ratio at the end of the step.

The PROP array for this material contains the following entries:

PROP(1) - Young’s modulus, E

PROP(2) - Poisson’s ratio, v

(4.10.7)
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PROP(3) - Modulus function identification

PROP(4) - Poisson’s ratio function identification.

4.11 Thermoplastic-Plastic Power Law Hardening Material Model

This material model represents the behavior of an elastic-plastic power law hardening material with temperature-

dependent material constants. Both Young’s modulus and Poisson’s ratio are allowed to vary with temperature along

with the material yield stress. The values of Young’s modulus, Poisson’s ratio, and yield stress at the beginning and

end of the time step are stored as state variables. The relationship between the material property value and

temperature is specified using a FUNCTION definition.

We will separate the material behavior into deviatoric and bulk responses. If we consider only deviatoric

behavior, the model has the following form during a plastic loading process

(4.11.1)

where A and m are material constants, Oys is the temperature-dependent initial yield stress, ~p is the equivalent

plastic strain, ~ is the effective stress, and &L is the Luders strain or yield plateau strain. The use of brackets in the

above expression denotes the use of a Heaviside function. The function is zero until the arithmetic expression within

the brackets becomes positive. The material constants for this model can be determined from measured stress versus

strain data through simple curve-fitting procedures. By suitably choosing the material constants A and m, the form

of the model can represent either elastic/perfectly plastic or linear hardening material behavior in addition to the

power law hardening response. The temperature dependence is captured by allowing the initial yield stress and

elastic constants to be a function of temperature.

The expression for the stress at the end of the step is

()S~+l =S~ +Sij Sfi+lAt (4.11.2)

where we have used a backward Euler integration for the stress. The stress rate at the end of the step, $1+1, is

defined as follows

$ij=2~(@n+1[E~-E~ij)+2V(@n+’)(&iJ-&Pij)(4.11.3)

where & are the components of the plastic strain. We choose to use this expression for the stress rate because in
p lJ

the absence of plastic strain we recover the same expression for the stress as derived for the thermoplastic model.

()
We define the difference expression for ~ @‘+1 as

+“+1 )-lJ(en)
pp+q= At . (4.1 1.4)

63



For von Mises flow, we can write the above as

where y is a scalar quantity.

“n+lSubstituting the above expression for S.. n+l
lJ

mto the expression for S.. results in
lJ

(4.1 1.6)

trwhere AT= yAt. The first two expressions on the right-hand-side of the equation define the trial stress S.. so that the
lJ

final expression becomes

We make use of the following identity

to get the final expression for the stress at the end of the step

[1= St, ~ 3p(@n+*)Ay
s:+’ ij — ~tr””

(4.11.7)

(4.11.8)

(4.11.9)

The plastic strain increment, Ay, is the only unknown in the equation. To solve for the plastic strain increment,

we must go back to our expression for the yield function. Combining the yield function with the expression for
. Sn+l

and making use of the identity, we get
ij

6tr –3N(@n+1)A7 = 6yS(Eiln+1)+A(E~ +Ay-&L)m (4.11.10)

which is solved for Ay using Newton Raphson iteration. The computed value of A’yis substituted back into the

expression for S ‘+1, Equation (4. 11.9).
lJ

The bulk response is assumed to be linear elastic. The pressure at the end of the step is calculated using the

volumetric strain, CW, through the relation
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()n+l
where K @ is the

O;:l (k=3K @n+l ~~1 (4.11.11)

temperature-dependent bulk modulus at the end of the step. Following the procedure

outlined for the thermoplastic material model, we can arrive at the final expression for the bulk response.

The stress ffom the deviatoric and bulk responses is combined to give the final stress state.

The thermoplastic-plastic material uses the following state variables:

EQPS

YMO

YMl

XNuo

XNul

Yso

Ys 1

RADIUS

Equivalent plastic strain

Young’s modulus at the beginning of the step

Young’s modulus at the end of the step

Poisson’s ratio at the beginning of the step

Poisson’s ratio at the end of the step

Yield stress at the beginning of the step

Yield stress at the end of the step

Radius of the yield surface.

(4.11.12)

The PROP array for this material contains the following entries:

PROP(1) -

PROP(2) -

PROP(3) -

PROP(4) -

PROP(5) -

PROP(6) -

PROP(7) -

PROP(8) -

PROP(9) -

Young’s modulus, E

Poisson’s ration, v

Yield stress, CTy

Modulus function identification

Pr function identification

Yield function identification

Hardening constant, A

Hardening exponent, m

Luders strain, &L.

4.12 Multi-mechanism Deformation (M-D) Creep Model

A multi-mechanism deformation (M-D) model proposed by Munson and Dawson (1979, 1982, 1984) and

extended by Munson et al. (1988) has been included in SANTOS to model the creep behavior of rock salt. This

model, which is based on the deformation map for salt, describes the relationship between the steady-state creep rate,

stress, and temperature in terms of three deformation mechanisms in salt. Two of these mechanisms are dislocation

glide and dislocation climb. The effects of a third mechanism are also included in the M-D model. Although this

mechanism has not been characterized in terms of microstructural processes, its effects are observed in creep
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experiments. Transient workhardening and recovery responses are incorporated through a state variable function

that modifies the steady-state creep rates.

In the M-D model, the equivalent creep strain rate at steady-state, Es, is assmwd to be equal to the sum Of three

terms, each arising from one of the three mechanisms described above, i.e.,

&~ = Esl +&s2 +ES3 . (4.12.1)

The three equivalent strain rates appearing on the right-hand-side of the above equation are given by the

following functions:

(4.12.2)

(4.12.3)

[ ( 3+B2exp(-alsinh(q(aeiGO))

kS3=H(ae –CJo) Blexp – (4.12.4)

where the Ai’s, Bi’s and ni’s are constants, the Qi’s are activation energies, @ is the absolute temperature, R is the

universal gas constant, u is the elastic shear modulus, cre is the equivalent stress, q is a constant, cro is the stress limit

of the dislocation slip mechanism, and H is the Heaviside step function. In the above equation, &sl represents the

effects of the dislocation climb mechanism, &s2 represents the effects of the unidentified mechanism, and E53
represents the effects of the glide mechanism. The relationship between (se and the components of the stress tensor

under general loading conditions depends on the choice of the stress generalization and will be discussed later.

Transient creep is incorporated in the M-D model through the use of a scaling function F, which modifies the

steady-state creep rate. The total equivalent creep rate & is given by:

ii = F(CJe,@,q)6S . (4.12.5)

The arguments of the transient scaling function are equivalent stress, temperature, and an internal state variable,

~. The evolution of ~ is described by a separate rate equation. Three branches of the function F can be identified:

(1) a workhardening branch where F assumes a value greater than unity, (2) an equilibrium branch where F is equal

to unity, and (3) a recovery branch where F is less than unity. The expression for F is

[[1]
2

F=exp l-~ A forq<&~ (4.12.6)
Et

F=lfor$=&~ (4.12.7)
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[[ 11
2

F=exp–1–~ 6 for q>&; . (4.12.8)

Et

In ~ above equations, A and 8 are referred to as the workhardening and recovexy functions, respectively,

while .at is referred to as the transient strain limit. The workhardening and recovery functions are assumed to be

of the form

go(Je
A=ctw+~wlo —

v

()
a=ar+pr log: .

The trimsient strain limit is a fimction of temperature and stress given by

()
m

E: = K. exp(c@) %
P

(4.12.9)

(4. 12.10)

(4.12. 11)

where Ko and c are constants. Finally, the evolution equation for the internal variable g is

~=(F–l)iS=E–6S . (4.12.12)”

To complete the generalization of the M-D constitutive model, an equivalent stress and flow rule for the creep

strain rate must be defined. These two definitions provide the necessary linkage among the three-dimensional

stress state, the creep strain rate, and the invariant creep relationships described earlier. According to Munson et

al. (1988), the Tresca stress generalization provides the most appropriate definition of the equivalent stress for rock

salt. With the Tresca stress generalization, the equivalent stress becomes

0: = 2&cos~ = tsl –03

where~ is the Lode angle defined by

(4.12.13)

–3J3 ~
sin3V =

2J;f 2

In the two preceding equations, J2 and J3 are the second and third invariants of the deviatoric part of the stress

tensor, and 01 and 03 are the maximum and minimum principal stresses, respectively. The flow is assumed to be

associative so that the direction of = is normal to the Tresca flow surface. Unfortunately, the normal is undefined

as v = t ~ where sharp comers exist in the Tresca flow surface. At these locations, the flow is assumed to be

normal to the von Mises flow surface. The von Mises flow surface is characterized by a constant value of 6P

where
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vm
CJe r= 3J2 . (4.12.14)

The expression for the effective or equivalent creep strain rate, ~j, for Tresca flow is

J-c -

[

Cosze Sij + sine& s s ZJ28
‘ij = E

(

..—
ip pJ ~

Cos 3e& COS30J z ij
)]

(4.12.15)

where ~ can be replaced by F&s. The resulting expression for the stress rate, $n, now becomeslJ

[[

s; =2~ &ij –F:s COS26 Sn + sine

(

@ Sn Sri 2J2 ~
ip pj q

1)

(4.12.16)
cos36& lJ Cos 3eJ2

ij

which is highly nonlinear.

Integration of this equation and the evolutionary equation governing the rate of change of ~ rtquires the use of a

numerical procedure. Studies of various numerical integration methods have revealed that simple forward Euler

integration is as effective as any method. Following the methodology outlined previously for the Power Law Creep

Model, the stress at step n+ 1 is simply

()S;+l =S; +Sij S; At

and in a similar fashion

(4.12.17)

(4.12.18)

The forward Euler operator is conditionally stable. The critical time step for stability can be determined using

the method of Cormeau (1975) based on the form of the flow potential and the elastic constants. This has been done

for the M-D model. Two estimates for the critical time step are computed, and the minimum of the two is used for

the calculation. These time step estimates are given by

and

——

(4.12.19)

(4.12.20)

where ‘Cm= = cos(l~J2 = ~. The equivalent Tresca stress, G, is the value at the end of step n.
2
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Accuracy of the method is assured if the time steps are sufficiently small, but using the stable time step cannot

be guaranteed to always produce an accurate solution. However, comparison of results using this integration method

with known solutions for complex two- and three-dimensional creep problems has shown the method to be very

accurate when the stable time step is used.

For a typical application, the time increment, Atst 1, is smallest when G is largest, and as the effective stress

decreases, such as when the problem approaches steady-state creep, the critical time step increases. In most

instances, the user-specified time step, At, will be larger than the time step needed for stability, min(Atst 1, AtsU).

Therefore, the solution time step is broken into subincrements for integrating the constitutive model with the size of

each subincrement changing with the stress. The subincrementation procedure is discussed at the beginning of this

chapter.

The transient creep part of the M-D model causes the stress to change rapidly, which causes the time step to be

very small. The adaptive time step feature was developed to accommodate the small time step initially and allow it

to grow as the solution proceeds toward steady state. Experience has shown that an initial time step size of 1.0x 10-

5 seconds works well with a tolerance of 0.01. The maximum time step size depends on the time scale of the

problem and the degree of nonlinearity.

The M-D creep model uses the following state variables:

EQCS -

ZETA -

SDOT -

TRESCA -

ETSTAR -

equivalent creep strain

current values of the evolutionary parameter

stress rate for the current time step

equivalent stress computed using TRESCA criterion

transient strain limit.

The PROP array for this material contains the following entries:

PROP(1) - 2p

PROP(2) - K

PROP(3) - Al

Q1
PROP(4) - ~

PROP(5) - n 1

PROP(6) - B1

PROP(7) - A2

Q2
PROP(8) - —

R

PROP(9) - n2

PROP( 10) - B2

PROP( 11) - co

PROP(12) - q

PROP(13) - m

PROP( 14) -%

PROP(15) - C@
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PROP( 16) -

PROP(17) -

PROP(18) -

PROP( 19) -

PROP(20) -

%

%

/5

RN3, exponent of workhardening and recovery term used to compute F

AMULT, scalar multiplier of time step needed for stability (default 0.98)

4.13 Volumetric Creep Model

The consolidation behavior of geomaterials and salt, in particular, is of interest to analysts because of the use of

these materials as backfill and as a sealing material in waste disposal applications. The volumetric creep model

implemented in SANTOS is based on the work of Sjaardema and Rleg (1987), who developed their model based on

the hydrostatic consolidation tests of salt with added water by Holcomb and Shields (1987). Time-dependent

behavior is included in both the volumetric and the deviatoric response. The form of the model is such that the

mechanical response of the consolidated material becomes identical to that of the intact material as the density

approaches that of the intact material. The elastic moduli were found from the tests to depend on the density, p, of

the material through relationships of the form

K = KOexp(K1p) (4.13.1)

where ~, K 1,~, and pl are material constants.

For the discussion of the volumetric creep model, it is appropriate to decompose the total strain rate into

volumetric and deviatoric parts. Because intact salt creeps deviatorically when subjected to a deviatoric stress state,

crushed salt should logically be expected to creep deviatorically. This expectation becomes more reasonable as the

density increases because, in the limit, the crushed salt becomes intact salt. The deviatoric crushed salt creep model

presented here is based on the power law secondary creep model, which has been used to describe the creep behavior

of intact salt. This model is described in Section 4.9, Power Law Creep Material Model.

The development proceeds by envisioning that the porous crushed salt uniaxial sample is composed of cylinders

of salt, each of which has the intact salt secondary creep behavior separated by areas of open space. The local stress

acting on the salt cylinders is then stated in terms of the average stress on the porous sample. The cross-sectional

area of the porous sample is expressed in terms of the net cross-sectional area of the salt cylinders. The final

resulting continuum model for the rate of the deviatoric stress of crushed salt is then

(4.13.3)

where the constants A,Q,m, and p- refer to values for the intact material. The integration of the deviatoric part of

the stress is performed using the forward Euler operator. The integration method is the same as used for the power

law creep model, and the details of the integration may k found in Section 4:9, Power Law Creep Material Model.
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The volumetric part of the model can be written as the sum of elastic and inelastic parts as shown below

(4.13.4)

bkk
where d~ is the volumetric strain rate, ~ = ~ is the rate of change of the pressure, dcti is the volumetric creep

strain rate, and K (p) is the density-dependent bulk modulus. Laboratory consolidation tests on crushed salt have

shown the volumetric creep strain rate to be fit well by an expression of the form

(4.13.5)

where BO, B 1, and A are material constants obtained from the experiments. The density p is computed from the

relationship

[1
t

p = POexp jdk~dt
to

(4.13.6)

where PO is the density at time to. Equation (4.13.4) is solved for p and combined with the definition of the

volumetric creep strain rate, Equation (4. 13.5), to produce

[ ( kAp]P= K(P) dkk -~Bo eBIP –1 (4.13.7)

which is the expression to be integrated.

The expression for the pressure is integrated using the backward Euler operator. This operator is

unconditionally stable for any time step size. The expression for the pressure at the end of the step is

P ‘+1 = pn +pn+lAt (4.13.8)

which can be rewritten using the above equation as

pn+l=pn+(K(pn+l~d,k-#Bo[~BIPn+’-~~eAP’’+l])At . (4. 13.9)

Let us define a trial pressure as pm = pn + K(pn+l)dwAt, which lets us rewrite the above expression as

P
‘+l=ptr-K(f’n+’@Bo(eB1pn+l-’)eApn+’p “

(4.”13.10)
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We need to solve the above expression for the pressure, pn+ 1, for which we have chosen to use a Newton

Raphson scheme with a fixed number of iterations. Once we have the pressure at the end of the step, it is combined

with the deviatoric stresses to produce a trial stress state for the material. The trial stresses are accepted as the final

stresses it (1) the mean stress is tensile; (2) the out-of-plane trial stress is compressive; or (3) the mean stress is

compressive, and the out-of-plane trial stress is tensile but is less than 10% of the absolute value of the mean stress.

If these conditions are not met, then the deviatoric stresses are scaled back so that the out-of-plane stress is equal to

10% of the absolute value of the mean stress.

The volumernc creep material model uses the following state variables:

EQCS - equivalent creep strain

DENSITY - current density of the consolidating material.

The PROP array for this material contains the following entries:

PROP(1)

PROP(2)

PROP(3)

PROP(4)

PROP(5)

PROP(6)

PROP(7)

PROP(8)

PROP(9)

PROP( 10)

PROP(11)

PROP(12)

2p

K

A, creep constant

m stress exponent

&if isothermal or ~ if not
R~ R

VI, shear exponent

K1, bulk exponent

BO

B1

Al

pintact~ intact density

PO) initial density.

4.14 Viscoelastic Material Model

The mechanical response of many plastics, rubbers, epoxies, glasses, and other polymeric compounds can be

described quite well by a linear viscoelastic constitutive law. In the absence of any changes in temperature, the stress

at time t in a linear material with memory depends only on the past strain history. This can be expressed in general

terms as

for the shear response and

t

~kk = 3 j K(t – @&@)d~ (4.14.2)

-
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for the bulk response, where G(t) and K(t) are the shear and bulk relaxation moduli, respectively.

Unlike elastic constitutive equations in which the material moduli are constants, viscoelastic relations employ

moduli that relax over some period of time. A specific form for the relaxation moduli is obtained by considering the

mechanical analogy of the standard linear viscoelastic solid shown in Figure 4.14.1.

response and the dashpots represent the viscous response. By stringing together

moduli can be written as (Ferry, 1970)

The springs represent the elastic

N such elements the relaxation

(4.14.3)

TRI-S348-42-O

Figure 4.14. I Mechanical analogy of the standard linear solid.
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and

K(t) = Km + ~ (Ka – Km)e-p:(t) (4.14.4)

~=1

where the ~’s are relaxation constants (1/~ = relaxation time) and G= and Km are the long-time moduli. Since the

bulk and shear behaviors are assumed to be independent, Nb may be different from Ns and the s-e goes for ~b’s

and the @s’s. Ideally, an arbitrary number of elements could be used to gain the most accurate representation of the

behavior of the material. However, because of computer storage considerations, modeling of the bulk response is

limited to one term while the shear response is limited to a three-term representation. It should be noted that

Equations (4. 14.3) and (4. 14.4) differ slightly from the usual representation in that the long-time modulus is

subtracted from each relaxation modulus. This was done to simplify the data format, but caution should be used in

determining material property data for the material model to ensure that it conforms to the form of Equations

(4.14.3) and (4.14.4).

The constitutive law discussed above is based on the assumption that the entire body remains at a uniform

temperature. The relaxation moduli and the material parameters necessary to evaluate them can be regarded as

having been determined at a base-line temperature, ~o. To evaluate the effects of temperature changes, first let us

consider the modifications to the constitutive law if a uniform change in temperature is allowed. To do this, let G(t,

@) be the shear relaxation modulus at the constant temperature, ~. The remainder of the theory will be developed

using the shear modulus as an example. The modifications to the bulk modulus are handled in the s~e manner and

will not be repeated.

Using a change of variable, the shear modulus at the base-line temperature can be written as a function of log t.

We can now apply the hypothesis of temperature-time equivalence (Ferry, 1970; Leaderman, 1943; Ferry, 1950),

which states that all response functions (e.g., relaxation moduli) are affected by the uniform temperature change only

within a corresponding uniform shift of the logarithmic time scale. Materials exhibiting this kind of behavior have

come to be termed “thermorheologically simple” materials (Schwarzl and Staverman, 1952) This leads to the

following form for the relaxation moduli:

G(t,@) = L[logt + Y(G)] (4.14.5)

where V(G) is the “shift function” and is usually written as

Y(e) = log (p(@)

where the “shift factor,” q(@), conforms to

q@*)= I,q)(e)>o,:q>o ..

(4.14.6)

(4.14.7)

If we now define a “reduced time” by

~= U@)
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then

G(t,@) = G(g) . (4.14.9)

This means that the entire family of response functions can be determined by one member G(t) = G(t, @o),

provided the shift factor is known. The shift factor is assumed to be a material property that can be determined

experimentally. It should be noted that the temperature dependence of the responses in shear and in bulk could be

governed by two different shift functions. However, this is ruled out by the assumption of a therrnorheologically

simple material because the relaxation modulus in tension displays the shift property only if the bulk and shear shift

functions are identical (Muki and Sternberg, 196 1).

An additional modification required to account for varying temperature is that the concept of reduced time has

to be redefined. Morland and Lee (1960) have shown that if the reduced time is defined as

g(x,t) = jq[e(x,k)ldk (4.14.10)

o

then a generalized relaxation integral law can be derived from Equations (4.14.3) and (4.14.4). Assuming

deformation has taken place before time, t = O, the constitutive model can be written in the following form:

~’= g(x,’T)

t

o

no

(4.14.11)

For problems where changes in temperature are important, the shift factor must be specified. For convenience, a

specific form of the shift factor is incorporated into the material subroutine. An empirical equation which has been
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been shown to reflect accurately the behavior of many polymers near the glass transition temperature is used. This

equation, known as the WLF equation (Ferry, 1970; Williams, 1955; Williams et al., 1955) is given by

log(p~o(@)= =
cy+@–@o

(4.14.12)

where C? and C! are WLF constants which have been determined for many common polymers (Ferry, 1970). If

a Merent shift factor is available for the material of interest, it can easily be incorporated into the subroutine in

place of the WLF equation.

Integration of the shear and bulk equations is done in an identical manner. The equations coutd, in principle,

be integrated directly. However, this would require additional computer storage because the integration for each

time step is over all previous history. The storage requirements for this method would be prohibitive. A better

method for determining the stresses at each time step is based on the development of a recursion relation so that

the stress at time n+l can be determined from historical quantities at time n and the current value of the strain rate.

The development of this recursive method as implemented in SANTOS is described in Costin and Stone (1985).

The deviatoric and the bulk stress components are combined to give the final stress state for the material.

Historical information for each stress component is stored as a state variable. The viscoelastic material has the

following state variables:

BLKDECAY

DECAYX1

DECAYY1

DECAYZ1

DECAYXY1

DECAYX2

DECAYY2

DECAYZ2

DECAYXY2

DECAYX3

DECAYY3

DECAYZ3

DECAYXY3

.

.

.

.

single term bulk pressure

shear relaxation term 1 x-stress

shear relaxation term 1 y-stress

shear relaxation term 1 z-stress

shear relaxation term 1 xy-stress

shear relaxation term 2 x-stress

shear relaxation term 2 y-stress

shear relaxation term 2 z-stress

shear relaxation term 2 xy-stress

shear relaxation term 3 x-stress

shear relaxation term 3 y-stress

shear relaxation term 3 z-stress

shear relaxation term 3 xy-stress.

The PROP array for this material contains the following entries:

PROP(1) -

PROP(2) -

PROP(3) -

PROP(4) -

PROP(5) -

PROP(6) -

Short Time Bulk Modulus, K

Long Time Bulk Modulus, Km

Bulk Relaxation Constant, ~k

Long Time Shear Modulus, Gm

First Short Time Shear Modulus, G1

Second Short Time Shear Modulus, G2
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PROP(7) - Third Short Time Shear Modulus, G3

PROP(8) - First Shear Relaxation Constant, ~~

PROP(9) - Second Shear Relaxation Constant, ~~

PROP(10) - Third Shear Relaxation Constant, ~~

PROP(11) - First WLF constant, C 1

PROP(12) - Second WLF constant, C2

PROP(13) - Reference Temperature for Material Properties, To.

77

,.



Intentionally Left Blank

78



5.0 CONTACT SURFACES

Many structures of interest are composed of two or more parts that are either in contact or may come into

contact during semice. After contact, these parts can also slide with respect to one another. In the field of

computational mechanics, modeling contact and sliding behavior are done using contact surfaces, and there are

several numerical approaches for modeling this behavior. One method utilizes a thin finite element with a spcial

constitutive model to approximate gap and friction behavior (Goodman and Dubois, 1972). A second approach

uses Lagrange multipliers to impose gap closure constraints and frictional stick-slip conditions (Hibbitt, Karlsson

& Sorensen, Inc., 1992). In the setting of the dynamic relaxation algorithm, SANTOS employs a sliding contact

surface algorithm using a master-slave approach.

In the master-slave concept, the nodes on the designated slave surface are required by the algorithm to lie on

the master surface. Any sliding or slip must occur along the master surface. In turn, nodal forces from the slave

node are removed and applied to the master surface nodes. This transfer of forces maintains equilibrium at the

interface. The tangential shear or friction force as well as the determination of slip or no slip is incorporated into

this process involving the transfer of forces to the master surface. In SANTOS, the nodal forces are computed by

the divergence of the stresses within an element. Therefore, nodal forces can be used in conjunction with a Mohr-

Coulomb model for the contact surface fiction. SAN’TOS currently supports two types of master-slave contact

surface boundary conditions: (1) a deformable surface against a rigid plane, and (2) two distinct deformable

surfaces against each other.

For a strict master-slave algorithm such as the one implemented in SANTOS, the user must speci@ which

surface is the master surface and which surface is the slave. This choice can have a significant effect on the

calculation and the efficiency of the solution. For example, the coarser mesh should be designated as the master

surface when the two contacting materials are the same as shown in Figure 5. la. If the master-slave surfaces are

reversed as in Figure 5. lb, interpenetration that is not detected by the algorithm can result. The choice of master-

slave roles is less clear when the materials of the contacting bodies are different. The user should typically select

the stiffer of the two materials to be the master surface but be prepared to reverse the roles if convergence is slow or

interpenetration is observed.

The contact surface algorithm is composed of two phases: (1) a location phase where the time, location, and

amount of slave node penetration of the master surface is determined along with identification of the correct master

surface segment and master surface nodes defining the segment, and (2) an application phase where the nodal

force transfer from the slave node to the master surface nodes is performed along with a kinematic location of the

slave node to the appropriate location on the master surface.

5.1 Location Phase

Contact location is accomplished by monitoring the displacements of the slave nodes throughout the

calculation for possible penetration of a master surface. SANTOS uses an algorithm called neighborhood

identification to pair those slave nodes and master surfaces where potential contact is likely. The neighborhood

identification is usually the most time-consuming part of the location phase. Obviously, the most robust approach
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(a) Surfacel isthe master and (b) Surface 1 k the slave and
surface 2 is the slave sutiace 2 is the master

TFII-6348-20-O

Figure 5.1. Schematic showing the effect of changing the master-slave designation between two surfaces.

wouldbe to check every slave node against every master surface at every time step. This, however, is inefficient.

The current strategy is to use a global search to determine which slave nodes are in close proximity to a master

surface. The search process accumulates these potential interactions by constructing a local neighborhood around

the nmster surface and globally searching for all slave nodes that fall within the neighborhood. The algorithm is

based on a particle search technique, Heinstein et al., 1993. It sorts the slave nodes by location and uses a binary

search to construct a list of slave nodes in a master surface neighborhood. The search algorithm depends only on

the number of slave nodes and not on the geometry of the problem. It takes advantage of the known positions of

the slave nodes and master surfaces.

After gathering a list of potential interactions, a detailed contact check is done for each slave-nodehna.ster

surface ptir. This check determines: (1) which of the candidate master surfaces is in contact with the slave node,

(2) the point of contact. (3) the amount of penetration,and (4) the direction the slave node should be pushed back.

The contact check also tries to resolve pushback ambiguities that arise due to discretization of the master surface.

A complete discussion of these ambiguities and their resolution can be found in Heinstein et al., 1993.

The benefits of reducing the time spent in the contact surface algorithms can be significant. For iterative

solvers, such as dynamic relaxation, inaccuracies in the location phase lead to an increase in the number of

iterations required for convergence. These inaccuracies arise mainly fkom incorrectly determining the location of

contact as a slave node slides across another surface. For large finite element simulations with large numbers of

slave nodes and master surfaces, as much ~as50°A of the total CPU time ii spent in the Ioeation phase. Thus, the

speed ,and efficiency of the contact detection algorithms are important.
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5.2 Application Phase

The operation of the master-slave scheme can be demonstrated in the following example where slave node I lies

between master nodes M and N, as shown in Figure 5.2.1. The location phase algorithm has already determined that

node I has penetrated the master surface segment connecting nodes M and N. Because node I has penetrated the

master surface, the normal force (Rn) and tangential force (Rt) at node I me determined. me coefficient of friction>

~, is used in conjunction with Rn to determine the threshold value for slip, @n. If Rt is less than @n,, then no sliP

occurs and both the values of Rn and Rt are transferred to the master swface nodes using a weighting Procedure

based on the position of the slave node along the master segment.

TRI-S348-21-O

Figure 5.2.1. Schematic showing the penetration of the master surface by slave node I. Node I is cinematically

restored to the master surface, and its nodal forces are transfemed to the master surface nodes M

and N.
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The enforcement of the contact constraint is done using nodal velocities rather than displacements. In addition,

the constraint is not enforced in one iteration but over several iterations to improve the convergence of the nonlineru’

equilibrium iterations. The nodal velocity of slave node I is rotated into normal and tangential components. For the

no-slip case, the tangential velocity of the slave node is assigned a new nodal velocity based on the tangential

velocity of the corresponding point on the master surface. The normal velocity component of the slave node is given

the normal velocity of the master surface modified by an incremental velocity based on thedepth of penetration, 5,

by the slave node. The incremental velocity is applied in a direction to move the slave node back towards the master

surface. The resulting equation for the normal velocity component is computed as

(5.2.1)

The pushback factor of 0.1 ensures that the slave node is not pushed back to the master surface in a single iteration.

For the case when Rt is greater than WRn, slip can occur. The tangential force Rt is reduced to its maximum

allowable value of @n which results in a force imbalance and allows movement of the slave node along the master

surface to a new equilibrium position. The slave node forces, Rn and Rt, are again transferred to the master nodes.

‘I’he normal velocity of the slave node is modified exactly as in the no-slip case while the tangential velocity

component is not modified at all.

The nodal mass associated with each contacting slave node is transfemed to the appropriate master surface nodes

using the weighting procedure used for transferring slave node forces. The transfer of mass is used by the solution

F This transfer of mass, which is performed foralgorithm during the calculation of the nodal accelerations, a = ~.

each iteration, allows the master surface nodal accelerations to reflect the presence of the slave surface.

Incorporated within the contact surface model is the capability for two surfaces initially in contact to separate at

a prescribed load level and for two distinct surfaces to contact and remain in contact during deformation. The user is

allowed to specify the separation force level and to specify the separation tolerance with which both surfaces are

assumed to be in contact. ‘Ile default value of the separation force level is 1. x ld”. The default value of the

separation tolerance is .02 times the length of the master surface segment. Inclusion of friction does have the effect

of increasing the number of iterations required for convergence in many cases.
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6.0 LOADS AND BOUNDARY CONDITIONS

SANTOS contains several types of loads and boundary conditions. Displacements, pressures, concentrated

forces, and body forces maybe prescribed. Inthissection, redescribe howthese weimplemen@d intiepro~m.

~6.1 Kinematic Boundary Conditions

The kinematic boundary conditions described below are all accomplished by altering the acceleration, velocities,

and displacements of the nodal points. The application of these boundary conditions does not vectorize because they

require a function look-up and a scatter of values. All of the kinematic boundary conditions are applied to nodal

point sets.

6.1.1 No-Displacement Boundary Conditions

The no-displacement boundary conditions are accomplished by setting the appropriate component of the

acceleration, velocity, and displacement of the node to zero. The imbalance force component for the node is

accumulated with other no-displacement nodes to produce a total reaction force which is written as a global variable

(RX and RY) at each load step. The imbalance force component for the node is then set to zero.

6.1.2 Prescribed Displacement Boundary Conditions

The prescribed displacement boundary conditions are accomplished by setting the displacement component of

the node point to the required displacement value corresponding to the end of the step. The appropriate components

of the acceleration and velocity of the nodal points are set to zero along with the imbalance force component.

6.1.3 Sloping Roller Boundary Conditions

This displacement boundary condition requires the nodal point set to displace along a line defined by the

analyst. The analyst defines the line by providing the components of the surface outward normal. The acceleration

and velocity of the node point are rotated into a coordinate system normal and tangential to the line. The normal

acceleration and velocity components are set to zero, and the remaining tangential components are rotated back to

the global coordinate system. The imbalance force associated with the node is also rotated into the normal and

tangential coordinate system. The normal force component is set to zero, and the remaining tangential force is

rotated back into the global coordinate system.

6.2 Traction Boundary Conditions and Distributed Loads

The boundary conditions described below apply external forces to selected nodes. The pressure boundary

condition is associated with element side sets while the nodal force boundary condition applies to nodal point sets.

Body forces (distributed loads) are applied to each node in proportion to the mass of the material that surrounds it.
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6.2.1 Pressure

The set of consistent nodal point forces arising from pressures distributed over an element side is defined via the

principle of virtual work by

where the range of the lower-case subscripts is 1 to 2 and the upper-case subscripts 1 to 4.

Since the virtual displacements are arbitrary, they may be eliminated to yield

fil = –~$1 Pni dA . (6.2.2)

s

The most general pressure distribution we allow is mapped from nodal point pressure values via the isoparametric

shape functions. The resulting expression for the consistent nodal forces is

For the four-node constant stress element used in PRONTO,$1is givenby

where

and ninl = 1. For the geometry and pressure distribution shown in Figure 6.2.1, it can be shown that

(6.2.4)

(6.2.5)

xi = xiI@I (6.2.6)
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Figure 6.2.1. Definition of a pressure boundary condition along an element side.

and

nidA = eij3~d~ = eij3 xjK AK d~ .
d&j

Then the consistent nodal forces can be written as

1

fi* = –
fpJeij3‘jK ‘K ~1 h@J ‘~ .
——

2

Combining Equations (6.2.4), (6.2.5), and (6.2.8):

The above expression is evaluated as

Ni =
{1

Y1–Y2
‘eijs xjK ‘K = x2 –xl

(6.2.7)

(6.2.8)

(6.2.9)

(6.2.10)
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and

(6.2.1 1)

The nodal values for the pressure are calculated using the user-supplied scale factor and time history function. The

values are calculated for the beginning of the time step.

The application of the pressure boundary conditions is fully vectorized. Blocks of element sides are processed

in vector blocks using the scratch element space. After the consistent nodal point forces are calculated for a block of

element sides, they are accumulated into the global nodal force array.

6.2.2 Adaptive Pressure

l%e adaptive pressure boundary condition in SAN’IQS allows the analyst to model the behavior of gas-filled

cavities that change internal pressure as the cavity deforms. The analyst defines the cavity using a side set identifier,

and the volume of the cavity is computed every iteration based on the current deformed shape. The cavity volume is

passed to SUBROUTINE FPRES, which is user supplied, where the gas pressure is computed. This gas pressure is

then applied to the defined side set as a pressure boundary condition.

6.2.3 Nodal Forces

Nodal point external forces are applied to each point in the node set. The magnitude of the force is determined

by the user-supplied scale factor and a time history function. The time history fimction is evaluated at the end of the

load step. If the analysis type is axisymmetric. then the nodal forces are input as force per radian.

6.2.4 Gravity Forces, Body Forces, and Distributed Loads

Gravity and body forces are computed using the third integral in Equation (3.1.8). The same routines that

compute the diagonal mass matrix are used to form the gravity load vector. The density, p, is the input density for

the specific material and not the fictitious density computer for the stable time increment. The component direction

accelerations are specified on the GRAVITY input card. In addition to the x- and y-direction accelerations, the code

supports an angular acceleration. The magnitude of the acceleration is determined by the user-supplied scale factor

and a time history function. The time history function is evaluated at the end of the load step.

The nodal values of the distributed loads are read from an externally written file, fort.38, in the following

format:

READ(38) TIME, (DISTX(I), 1=1,NNOD), (DISTY(I), I=l,NNOD)

at the desired time intervals. DISTX and DISTY are the nodal point distributed load components in the x and y

directions, respectively. These nodal values are in units of force per unit volume. This force/volume is multiplied by

the appropriate nodal volume to obtain the magnitude of the nodal loading. The nodal volume is computed using the
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diagonal mass matrix routines with a density equal to one. An example of this type of loading is the body force

generated by the presence of a magnetic field.

6.2.5 Thermal Forces

Nodal point temperatures for performing thermal/structural analyses are input into SANTOS in two ways. The

first method is to read an externally written temperature file, fort.56, in the following format:

READ(56) TIME, (T(I), I = 1,NNOD)

where the temperature, T,is read for each nodal point. SANTOS interpolates linearly between thermal time steps to

obtain the thermal solution for the time requested by the structural analysis. On the THERMAL STRESS input cmd,

the entry type is set to EXTERNAL to request this method.

The second method is best suited for problems where the structure is heated uniformly. The analyst can define

the temperature history of the body using an input function, and SANTOS will interpolate the body temperature at

the time requested by the structural analysis. On the THERMAL STRESS input card, the entry type is set to

LNTERNAL.

SANTOS requires the analyst to input, for each material, the curve of thermal strain versus temperature. This

curve is defined using an input function. With the temperature of each element known, it is a simple process to

interpolate the thermal strain for each element. If we difference the thermal strain computed at the beginning and at

the end of the load/time step and divide by At, we obtain a thermal strain rate. SANTOS computes the total strain

rate, using the velocity gradients, which can be decomposed into mechanical and thermal strain rate components.

The thermal strain rate is subtracted from the total strain rate to obtain the mechanical strain rate, which is passed

into the SANTOS constitutive models.
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SANTOS Users Manual

Listed below, in the order they appear in the text, are all the key words used in the SANTOS input.

1. TITle
2. PLAne STRa.in
3. AXIsymmetric
4. STEP CONtrol
5. AUTOSTEp
6. OUTput Time
7. PLOT Time
8. PLOT NODaI
9. PLOT ELement
10. PLOT STate
11. Thne STep SCale
12. RESidual TOLerance
13. MAXimum Iterations
14. Intermediate PRint
15. MAXimum TOLerance
16. GLObal Convergence
17. LOCal Convergence
18. ELAStic SOLution
19. PREdictor SCA1e FACtor
20. DISllibuted LOAds
21. INITial STRess
22. THERmal STRess
23. GRAVity
24. MINimum DAMping FACtor
25. NO DAMping
26. WRITe REStart
27. READ REStart
28. HOURglass Stiffening
29. XBEGIN
30. XEND
31. EXIT
32. FUNCtion
33. NO Displacement
34. Prescribed Displacement
35. SLOping ROL1er
36. Prescribed FORce
37. PREssure
38. ADAptive PREssure
39. CONtact SURface
40. RIGid SURface
41. MATerial
42. MATerial POint
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43. DELete MATerkd

The input data to SAN’TOSis in a free field form using key words. The key words am intended to
define a user friendly program language input. The input is order independent and can be entered
in any order the user finds convenient. The words as typed below in UPPER CASE represent key-
words in the list above. Most of the words can be abbreviated to the first few characters. In the list
above the upper case characters indicate the shortest abbreviation allowed. The words typed in

lower case below indicate variables for which the user should enter a value. An example data file
is shown below.

The free field input allows the user to delineate entries by either a blank, a comma, or an equals
sign. We find it useful to use blanks with commands (keywords), equal signs to separate keywords
and/or lists, and commas for lists of values. The material data requires material cues and their
associated values and equal signs are useful there. See the example input below.

A dollar sign indicates that whatever follows on the line of input is a comment and is ignored. An
asterisk indicates that the line is to be continued on the next line.

1. TITLE
(enter a suitable title on the next line)

2. PLANE STRAIN
Indicates that a plane strain analysis is to be performed. If the analysis type keyword is omitted
then a plane strain analysis is selected as default.

3. AXISYMMETRIC
Indicates that an axisymmetric analysis is to be performed.

4. STEP CONTROL
n, tl
m, t2

● ?.
● 7*

END

n ... number of load steps in interval Oc t < tl
tl ...end time for first load step interval
m .. . number of load steps in interval tl < t < t2
t2 ... end time for second load step interval

This command specifies the static load control parameters for the problem. The analysis is
assumed to begin at t=O and take n steps to time tl. The code then will take m load steps to time
t2. This set of input is completed by an END card. Any number of step-time cards is allowed.

5. AUTO STEP, tol, dtmax, dtmin, dtinit
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tol ... tolerance value used for controlling change of time step in material model
dtmax ... maximum value of time step allowed. Values of dt computed to be greater than

dtmax will be set to dtmax.
dtm”n ... minimum value of time step allowed. Computed time step cannot be smaller then this

value. If the user does not wish the time step to shrink insert NOREDUCE in this
field.

dtinit ... initial value of time step to be used in the calculation

This command can be used to automatically grow the solution time step for any time dependent
material model that allows such a feature. The command specifies a solution tolerance change
allowed over the step, along with allowable values of the time step (dtmax, dtmin, dtinit). The
time step will grow and shrink according to satisfaction of tel. If the user does not wish to allow
the time step to shrink, then insert the word NOREDUCE in place of dtmin.

6. OUTPUT TIME
n, tl
m, t2

● 7*

END

n ... frequency of printed output in interval Oe t c tl
tl ... end time for first output time control
m ... frequency of printed output in interval tl c t < Q
t2 ... end time for second output time control

This command specifies how often the requested printed output is to be written to the output file.
The required information is an integer number specifying how often, not the number of outputs,
the printed information is to be written. For example, if n or m is 1 then the output file will be
written every load increment. If n or m is 2 then the file will be written every 2 load increments.
Currently, the times tl and t2 must match the values specified on the STEP CONTROL card. An
END card terminates this section of input.

7. PLOT TIME
n, tl
m, t2

n ... fxequency of plotted output in interval 0< t c tl
tl ...end time for first output time control
m ... frequency of plotted output in interval tl c t e t2
t2 ... end time for second output time control

This command specifies how often the requested plotting output is to be written to the output file.
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The required information is an integer number specifying how often, not the number of outputs,
the plotting information is to be written. For example, if n or m is 1 then the output file will be
written every load increment. If n or m is 2 then the file will be written every 2 load increments.
Currently, the times tl and t2 must match the values specified on the STEP CONTROL card. An
END card terminates this section of input.

8. PLOT NODAL, nodal name 1, nodal name 2, .....
allowable nodal van-able names:

DISPLACEMENT - nodal displacements (DLSPLX,DISPLY)
RESIDUAL - nodal residuals (RESIDX, RESIDY) and a scalar value (RESID)
MASS - nodal lumped masses (MASS)
REACTION - nodal force reactions (FX, FY)

The default nodal variables written on the plotting data base are the displacements whether
requested or not. The MASS specification results in having the lumped nodal masses written on
the data base. The names in parenthesis indicate the alphanumeric name of the variables which
are written on the plotting data base.

9. PLOT ELEMENT, element variable 1, element variable 2, ....
allowable element variable names:

STRESS - stresses (SIGXX,SIGYY,SIGZZ,TAUXY)
STRAIN - total strains (EPSXX,EPSYY,EPSZZ,EPSXY)
RATEDFM - deformation rates (DXX,DYY,DZZ,DXY)
STRETCH - material stretches: V of F = V R (STRECHXX,STRECHYY, STRECHZZ,STRE-

CHXY)
ROTA~ON - material rotations: R of F = V R (COSTHETA,SINTHETA)
DENSITY - current mass per unit volume (DENWI’Y)
PRESSURE - pressures (PRESSURE)
VONMISES - Von Mises equivalent stress (VONMISES)
HG - hourglass resistance forces (HGX,HGY)
EFFMOD - element effective modulus values used for the stable time step and mass scaling

(EFFMOD)
TEMPERATURE - element centroidal temperatures (TEMP)

The names in parenthesis indicate the alphanumeric name of the variables which are written on
the plotting data base. The default element variables are the stresses.

10. PLOT STATE, state variable 1, state variable 2, .....
The user can ask for any of the internal state variables to be written on the plotting data base.
Since all materials do not have the same internal state variables (some have none), a zero will be
written on the data base for an element using a material model that does not have a state variable
which is specified by the user. Hence; if the user asks for EQPS (equivalent plastic strain) and
ALPHAl 1,ALHA22,ALPHA33, and ALPHA12 (back stress components for kinematic harden-
ing) and he has a model where half the mesh uses the ELASTIC material and half the mesh uses
the ELASTIC PLASTIC material, much of the data written on the plotting data base will contain
zeros. The table below gives all the internal state variables names for all the material models.
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See the theory section for definitions of the variables if they are not obvious. The default state
variables are none. WARNING: Indiscriminate use of this option can create extremely large
plotting data bases.

allowable state van-able names:
--------------------- ----------------------------- -----------------------

ELASTIC = (no internal state variables)
ELASTIC PLASTIC = EQPS ALPHAl 1 ALPHA22 ALPHA33 ALPHA12 RADIUS
POWER LAW CREEP = EQCS
LOW DEN FOAM = (no internal state variables)
SOIL N FOAMS= EVMAX EVFRAC EV NUM
EP POWER HARD= RADIUS EQPS
LINEAR VISCOELASTIC = BLKDECAY DECAYX1 DECA~l DECAYZ1 DECAYXY1

DECAYX2 DECAYY2 DECAYZ2 DECAYXY2 DECAYX3 DECAYY3 DECAYZ3
DECAYXY3

THERMO EP = EQPS YMOYMl XNUO XNUl YSOYS1 RADIUS
THERMOELASTIC = YMOYMl XNUO XNUl
VOLUMETRIC CREEP = EQCS DENSITY
M-D CREEP MODEL = EQCS ZETA SDOT TRESCA ETSTAR
------------------------------- -------------------- ----------------------

11. TIME STEP SCALE, scft
scft ... scale factor to be applied to the internally calculated time step (default=l.0)

12. RESIDUAL TOLERANCE, value
value ... number, in percent, that is used to check for equilibrium and convergence of the

solution. Default is 0.5.

13. MAXIMUM ITERATIONS, value
value ... number of iterations allowed for any solution step. Default is two times the number

of nodes.

14. INTERMEDIATE PRINT, value
value ... frequency of intermediate print that provides information such as current equilibrium

imbalance, number of steps, and applied load magnitudes.

15. MAXIMUM TOLERANCE, value
value ... when the maximum number of iterations is ~ached, if the convergence tolerance is

less than value then the solution is assumed to be converged and the problem is
advanced to the next solution step.

16. GLOBAL CONVERGENCE
This card specifies that a global convergence measure is to be used for determining satisfaction
of equilibrium. This is the default method.

17. LOCAL CONVERGENCE, phd
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plocal ... threshold residual value to be used in computation of local convergence. Values of
the nodal residual below this value will be replaced by plocal in the convergence
check. The default is plocal =1.0.

This card specifies that a local convergence measure will be used for determining satisfaction of
equilibrium. The convergence check is done on a node by node basis and convergence is assumed
if each nodal residual is below the specified value on the RESIDUAL TOLERANCE card.

18. ELASTIC SOLUTION
This specifies that a load step is requested using only time independent material response for the
step. This card should be used only with the time-dependent material models.

19. PREDICTOR SCALE FACTOR, function id
jimction id... function id controlling the definition of the predictor scale factor

This option specifies the function id which defines the multiplier to be used for predicting the dis-
placements on the next load step. The multiplier is used on the incremental changes in displace-
ment over the previous load increment. The multiplier can be useful for reducing the number of
iterations required for a solution. The default value of the multiplier is 1.

20. DISTRIBUTED LOADS
This option specifies that an external file 38 is to be read for nodal values of a distributed force per
unit volume. This force/volume is multiplied by the nodal volume to obtain the magnitude of the
required loading. An example of this option is the body force generated by the presence of a mag-
netic field.

21. INITIAL STRESS, type, sigl, sig2, sig3, sig4
type ... specifies how the initial stress state will be specified. The choices are ‘USER, or

‘CONSTANT’. If ‘USER’ is selected then a user written subroutine must be supplied.
If type is ‘CONSTANT’ then the values of sigl, sig2, sig3, and sig4 must be provided.
The stresses will be assigned to each element in the model.

22. THERMAL STRESS, type, to, ithf, thforc
type ... identifies that a thermal stress analysis is to be performed. Default is no thermal stress

analysis. If type is ‘EXTERNAL’ then an external file56 is required in the proper for-
mat for use by the code. If type is ‘INTERNAL’ then the following input parameters
are needed.

to ... initial stress free temperature. Default is O.
ithj ... function id controlling temperature time response
th~orc ... thermal load norm for use in convergence tests. This parameter will be used as the

applied load norm. The default is O.

23. GRAVITY, igrvf, gravx, gravy, omega
igr@... function id controlling load time response
gravx ... specified acceleration in x-direction
gravy ... specified acceleration in y-direction
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omega ... specified angular velocity

24. MINIMUM DAMPING FACTOR, fac
fac ... this option allows the user to define the minimum allowable damping factor used in the

dynamic relaxation algorithm. The allowable values of damping range from zero to
one. If a damping value is computed that is less than fat, then the value is set equal to
fat. The default value is set to 0.2.

25. NO DAMPING, iter, ndstep
iter ... number of iterations with zero damping.
ndstep ...number of load steps with zero darnping

This option is usefhl for problems with thin beam like behavior. The problem is allowed to
deform without damping for a user specified number of iterations. This allows the problem to
more quickly Each the fundamental deformation mode before damping begins. Iter should be
selected as twice the number of elements meshed along the length direction. The normal darnping
algorithm can be initiated after performing ndstep load steps.

26. WRITE RESTART, n
n ... this option specifies that a SANTOS restart tape is to be written at a frequency of every n

increments. This information is written to file 30.

27. READ RESTART, n
n ... this option specifies that a SANTOS restart tape is to be read at step n and a new analysis

performed. Some internal checking is performed to insure that the restart tape is valid.
The restart tape is assigned to file 32.

28. HOURGLASS STIFFENING, hgstiff, hgvis
hgstifl... hourglass stiffening factor (default=.05 for plane strain and .01 for axisymmetric)
hgvis ... hourglass viscosity factor (default=.O for plane strain and .03 for axisymmetric)

29. XBEGIN, code name
code name ... name of the external code to be coupled with SANTOS.

This option indicates that the following lines are input data for the external code

30. XEND
This option indicates an end to the external code input data

31. EXIT (required to terminate the input data)

32. FUNCTION, function id
function id ... any nonzero number you wish to identify with this function; after a FUNCTION

statement you must enter a list of points defining your function:
xl , f(xl)
x2, f(ti)

● ?*
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● ✟☛

xn, f(xn)
END

(The list is terminated by a line containing the word END as shown. Any other valid input cue
will also work)

If the function represents a time history function to be used with one of the nodal boundary con-
dition specifications (e.g. PRESCRIBED DISPLACEMENT) or with a PRESSURE boundary
condition, if the value of time is not within the limits defined by xl and xn, no boundary condition
will be applied until the current value of time falls within the limits. This means that you can have
a boundary condition turn on at a specific time and/or turn off at a specific time.

33. NO DISPLACEMENT, direction, node set flag
direction ... either X or Y
node setjikg ... identifying number from the input data base which identifies the nodes you

want to have no displacement (note:. this is a nodal bc !)

34. PRESCRIBED DISPLACEMENT, dir, node set flag, function id, scale factor, aO,bO
dir ... either X, Y, RADIAL, TANGENT, or NORMAL
node setjlag ... identifying number from the input data base which identifies the nodes you

want to have this displacement (note: this is a nodal bc !)
function id .,, identifying number of the function you want to use to specify the time depen-

dence of the displacement
scale factor ... scale factor to be applied to the function (default=l.0)
aO,bO ... not used (if direction = X or Y) center of cylinder of sphere (if direction = IL4DIAL

or TANGENT) components of normal (if direction= NORMAL)

35. SLOPING ROLLER, node set flag, nl, n2
node set fig ... identifying number from the input data base which identifies the nodes that

have this bc (note: this is a nodal bc !)
nl, n2 ... components of the surface outward normal

36. PRESCRIBED FORCE, direction, node set flag, function id, scale factor, aO,bO
direction ... either X, Y, RADIAL, TANGENT, or NORMAL
node set jag ... identifying number from the input data base which identifies the nodes you

want to have this force (note: this is a nodal be!)
jimction id ... identifying number of the function you want to use to prescribe the time depen-

dence of the force
scale factor ... scale factor which will be applied to the function (default=l .0)
aO,bO ... not used (if direction = X or Y) center of cylinder of sphere (if direction = IL4DIAL

or TANGENT) components of normal (if direction = NORMAL)

37. PRESSURE, side set flag, function id, scale factor
side setjlag ... identifying number from the input data base which identifies the sides you

want to have this pressure (note: this is a side or element bc !)
function id ... identifying number of the function you want to use to prescribe the time depen-
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dence of the pressure
scale factor ... scale factor which will be applied to the function (default=l.0)

38. ADAPTIVE PRESSURE, side set flag, xO,yO
side set~ag ... identifying side set flag from the input data base which identifies the sides you

want to have this pressure
xO,yO... coordinates of point used to determine cavity area

This option allows the user to define a presst.ue boundary condition which depends on the solu-
tion. The user can write a subroutine FPRES which can adaptively apply a pressure boundary
condition based on various factors. An example of this option is the application of pressure due to
compression of an ideal gas.

39. CONTACT SURFACE, side set flag 1, side set flag 2, mu,dis, tenrel
side set jag 1 ... identifying number from the input data base which identifies the master sur-

face. (note: this is a side or element bc !)
side set jag 2 ... identifying number from the input data base which identifies the slave sur-

face. (note: this is a side or element bc !)
mu ... coefficient of friction (default= O.)if mu = FIXED then the surfaces are treated as fixed

surfaces
dis ... fraction of element side length used to determine tolerance for proximity to master sur-

face check (default is 1.e-8)
tenrel ... midual normal force acting on the slave node used to determine release condi-

tions.(default = 1.e40)

40. RIGID SURFACE, slave flag, xO,yO,nx, ny, mu
slavefig ... identifying number from the input data base which identifies sides that are slaved

to the rigid surface (note: this is a side or element bc !)
Xo,yo... coordinates of a point on the rigid surface
nx,ny ... outward unit normal to the rigid surface
mu ... coefficient of friction (default= O.)If mu = FIXED then the surface is assumed to be

fixed to the rigid surface.

41. MATERIAL, material id flag, material name, density, func id, thermal strain scaling fac-
tor

material id,.. material identification number from the input data base
material name ... valid material type name

‘ The current material types allowed in SANTOS are:
ELASTIC
ELASTIC PLASTIC
POWER LAW CREEP
LOW DEN FOAM
SOIL N FOAMS
EP POWER HARD
LINEAR VISCOELASTIC
THERMO EP
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THERMOELASTIC
VOLUMETRIC CREEP
M-D CREEP MODEL

density ... material density
func id ... function id to be used for specifying function number with proper thermal strain

variation with temperature. This value needed for THERMAL STRESS problems.
thermal strain ... scaling factor multiplier for function values given from thermal strain func-

tion. The default value of this factor is 1.

The allowable material names and their required material cues are given below. The material data
can be entered in any order separated by commas. An END statement is required to temninate the
material data. The material constant associated with each material cue, as defined in Section 4, is
given in parentheses.

1. ELASTIC (number of cues=2)

YOUNGS MODULUS (E)
POISSONS RATIO(V)

2. ELASTIC PLASTIC (number of cues=5)
YOUNGS MODULUS (E)
POISSONS RATIO(V)
YIELD STRESS (crY~)
HARDENING MODULUS (H)

BETA (~)

3. POWER LAW CREEP (number of cues=5)

TWO MU(2W)
BULK MODULUS (K)
CREEP CONSTANT (A)
STRESS EXPONENT (m)

Q if not)THERMAL CONSTANT (g. if isothermal or ~.

4. LOW DEN FOAM (number of cues=7)

YOUNGS MODULUS (E)
A
B
c
NAIR (contribution of trapped air to foam response; 1 for yes, Ofor no contribution)
Po
PHI (~)

5. SOIL N FOAMS (number of cues=7)
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TWO MU(2P)
BULK MODULUS (K)

AO
Al
A2
FUNCTION ID (function number of curve defining pressure-volume strain relationship)
PRESSURE CUTOFF (valid (negative) tensile fracture pressure)

6. EP POWER HARD (number of cues=6)
YOUNGS MODULUS (E)
POISSONS RA~O (V )

YIELD STRESS (aY$)
HARDENING CONST~ (A)
HARDENING EXPONENT (m)
LUDERS STRAIN (e~ )

7. LINEAR VISCOELASTICITY (number of cues =13)
BULK (K)
BULK INF (K”)
BULK RELAX ( ~~ )
SHEAR INF (G-)
SHEAR ONE (Gl )
SHEAR TWO (G2 )
SHEAR THREE (Gg )
RELAX ONE (~j )
RELAX TWO (~: )
RELAX THREE ( ~j )

cl (c:)

C2 (c;)

TEMPO (reference temperature for the material properties)

8. THERMO EP (number of cues = 9)
YOUNGS MODULUS (E)
POISSONS RATIO(V)
YIELD STRESS (oY~)
MODULUS FUNCTION (function defining Young’s modulus variation with @)
PR FUNCTION (function defining Poisson’s ratio variation with @)

YIELD FUNCTION (function defining yield stress variation with CI)
HARDENING CONSTANT (A)
HARDENING EXPONENT (m)
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LUDERS STRAT.N(EL)

9. THERMOELASTIC(number of cues= 4)
YOUNGS MODULUS (E)
POISSONS RATIO(V)
MODULUS FUNCTION (function defining Young’s modulus variation with @)

PR FUNCTION (function defining Poisson’s ratio variation with @)

10. VOLUMETRIC CREEP (number of cues= 12)
Two Mu (2p)
BULK MODULUS (K)
CREEP CONSTANT (A)
STRESS EXPONENT (m)
THERMAL CONSTANT (~ Q if not)if isothermal or ~

SHEAR EXPONENT (~1 )
BULK EXPONENT (Kl )

BO
B1

Al
INTACT DENSITY (pi~laC,)
INITIAL DENSITY (P. )

11. M-D CREEP MODEL (number of cues= 20)

Two Mu (2~)
BULK MODULUS (K)
Al
QUR
N1
B1

A2
Q2/R
N2

B2
SIGO (c. )
QLC (q)

M (m)
KO

c (c@)
ALPHA (ctW)
BETA (f)W)

DEL~C (6 )
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RN3 (exponent of workhardening and recovery term used to compute F)
AMULT (scalar multiplier of time step needed for stability, default 0.98)

Examples for the ELASTIC PLASTIC material are given below to illustrate how the user might
input the data in different forms. All three examples are identical as far as SANTOS is concerned.

Example 1:

MATERIAL, 1, ELASTIC PLASTIC, 1., 1, 5.E-6
HARDENING MODULUS = 30.E4
YOUNGS MODULUS = 30.E6
BETA = .5
POISSONS RATIO = .3
YIELD STRESS = 30.E3
END

Example 2:

MATERIAL, l,ELASTIC PLASTIC, 1.,1,5.E-6
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA =.5
YIELD STRESS = 30.E3 HARDENING MODULUS = 30.E4
END

Example 3:

MATERIAL,l, HASTIC PLASTIC,l. ,1,5.E-6
YOUNGS MODULUS = 30.E6 POISSONS RATIO = .3 BETA = .5
YIELD STRESS = 30.E3 HARDENING MODULUS = 30.E4 END

42. MATERIAL POINT, X,y

x,y ...coordinates of a material point which will be monitored and printed at the output inter-
vals,

43. DELETE MATERIAL, material id, deletion time
muten.al id ... material identification number
deletion time ... time at which all elements made up of this material should be deleted from

the mesh.

Example Input File:

TITLE
EXAMPLE INPUT

AXIS=TRIC
STEP CONTROL

10 1.
NND
OUTPUT TIME
2 1.

END
PLOT TIME
1 1.

END

FILE

NO DISPLACEMENT, X = 1
PRESCRIBED DISPLACEMENT, Y ,1,1,.05
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FUNCTION,I
0,0
1.,1.
END
MATERIAL, l,ELhSTIC PIASTIC,l. $ 21-6-9 Stainless Steel
YOUNGS MoDULUS=29.4+6 POISSONS RATIO=.3
YIELD STRESS=58.0E+3 HARDENING MODULUS=29.4E+4 BETA=l.
END
MATERIAL, 2,ELASTIC,1. $ Tape Jbint Filler (Steel)
YOUNGS MODULUS=29.4E+6 POISSONS RATIO=.3
BND
MATERIAL,3,ELASTIC,1. $ Equivalent mass elements simulating remainder
YOUNGS MoDuIJJS=30.E6 POISSONS RATIO=.3 END
RIGID SURFACE = 100,0.,0.,0.,0.,1.
CONTACT SURFACE = 101,102
CONTACT SURFACE = 103,104
CONTACT SURFACE = 105,106
CONTACT SURFACE = 107,108
EXIT
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‘ser Subroutines

SANTOS allows the user to supply their own subroutines for defining an initial stress state
(SUBROUTINE INITST) and an adaptive pressure routine (SUBROUTINE FPRES). The initial
stress feature is particular useful for geomechanics applications where an overburden stress is a
function of depth. The adaptive pressure capability has been successfully used to define the
pressure acting on the walls of a deforming cavity based on an assumption of ideal gas behavior.

The call to SUBROUTINE IMTST has the following form:

SUBROUTINE INITST ( SIG, COORD , LINK, DATMAT, KONMAT, SCREL )
c

INCLUDE ‘params. blk’
INCLUDE ‘psize.blk’
INCLUDE ‘contrl .blk’
INCLUDE ‘bsize.blk’
INCLUDE ‘timer.blk’

c
DIMENSION LINK (NELNS,NUMEL) ,KONMAT (10,NEMBLK) ,
COORD (NNOD,NSPC) ,SIG(NSYMM, NUMEL) ,DATNAT(MCONS, ●),
SCREL (NEBLK,*)

.
RETURN
END

where the calling arguments are defined as:

SIG - element stress array which must be returned with the required stress values

COORD - global nodal coordinate array

LINK - element connectivity array

DATMAT - material property array

KONMAT - material property integer array

SCREL - scratch element storage space

The arguments contained in the DIMENSION statement are located in the COMMON blocks
which will be included during the program MAKE operation. If the MAKE utility is not used then
the COMMON blocks will have to be explicitly included. This subroutine is called once prior to
beginning the calculation by SUBROUTINE IMT. An example of a typical routine used for a
geomechanics application is shown below. In this example, only material #1 is being initialized
with respect to depth. Other materials in the problem are having their initial stresses set to zero.
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SUBROUTINE INITST( SIG,COORD,LINK,DATMAT,XONMAT, SCREL )
c
c **********************************************************************
c
C DESCRIPTION:
C THIS ROUTINE PROVIDES AN INITIAL STRESS STATE TO SANTOS
c
C FORMAL PAFW4ETERS:
C SIG REAL ELEMENT STRESS ARRAY WHICH MUST BE RETURNED
C WITH THE REQUIRED STRESS VALUES
C COORD REAL GLOBAL NODAL COORDINATE ARRAY
C LINK INTEGER CONNECTIVITY ARRAY
C DATMAT REAL MATERIAL PROPERTIES ARNLY
C KONMAT INTEGER MATERIAL PROPERTIES INTEGER ARRAY
c
C CALLED BY: INIT
c
c **********************************************************************
c

INCLUDE ‘params.blk’
INCLUDE ‘psize.blk’
INCLUDE ‘contrl.blk’
INCLUDE ‘bsize.blk’
INCLUDE ‘timer.blk’

c
DIMENSION LINK(NELNS,NUMEL),KONMAT(IO,NEMBLK) ,
COORD(NNOD,NSPC) ,SIG(NSYMM,NUMEL) ,DATMAT(MCONS, *),
SCREL(NEBLK, *)

c
DO 1000 I = l,NEMBLK

MATID = KONMAT(l,I)
MKIND = KONMAT(2,1)
ISTRT = KONNAT(3,1)
IEND = KONMKT(4,1)
IF( MATID .EQ. 1 )THEN

DO 500 J = ISTRT,IEND
II = LINK( l,J )
JJ = LINK( 2,J )
KK = LINK( 3,J )
LL = LINK( 4,J )
ZAVG = 0.25 * ( COORD(II,2) + COORD(JJ,2) + COORD(KK,2) ~

COORD(LL,2) )
STRESS = - 2.256E4 * ( 655. - ZAVG )
SIG(l,J) = STRESS
SIG(2,J) = STRESS.
SIG(3,J) = STRESS
SIG(4,J) = 0.0

500 CONTINUE
ELSE

DO 600 J = ISTRT,IEND
SIG(l,J) = 0.0
SIG(2,J) = 0.0
SIG(3,J) = 0.0
SIG(4,J) = 0.0

*
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600

1000

CONTINUE
END IF

CONTINUE
RETuRN

END

The call to SUBROUTINE FPRES has the following form:

SUBROUTINE FPRES ( VOLUME, TIME, PGAS )
.
.
.
RETURN
END

where thecallingargumentsaredefinedas:

VOLUME - computed volume of the cavity

TIME - current analysis time

PGAS - calculated gas pressure to be returned to calling program

This subroutine is called each iteration from SUBROUTINE EXLOAD. An example of a typical
routine usedfora geomechanics applicationisshown below.Lnthisexample,thevolume coming

intothesubroutinecorrespondstoone-quarterofthetotalcavityvolume due to the use of
symmetry modeling conditions. The gas generation rate varies with time. The volume is multiplied
by 4 to get the correct volume and the volume of solids is subtracted to get the free volume. The
ideal gas law is then used to compute the internal cavity gas pressure.

SUBROUTINE FPRES ( VOWME ,TIME ,PGAS )
c ....
c ....
c ....
c ....
c ....
c ....
c ....
c ....
c ....
c ....
c

THE PRESSURE IS COMPUTED ON THE BASIS OF THE IDEAL GAS LAW,
Pv = NRT . THE TOTAL NUMBER OF MOLES OF GAS, N (EN), PRESENT
AT ANY TIME IS DETERMINED ON THE BASIS OF A CONSTANT RATE OF GAS
GENERATION . R IS THE UNIVERSAL GAS CONSTANT AND THETA IS THE ROOM
TEMPERATURE , 300 K. V IS THE CURRENT VOLUME OF THE ROOM. THE VOLUME
MUST BE CORRECTED BY MULTIPLYING BY 2 OR 4 TO ACCOUNT FOR THE USE OF
HALF OR QUARTER -SYMMETRY MODELS. THE VOLUME MUST ALSO BE MULTIPLIED
BY A FACTOR TO ACCOUNT FOR 3D LENGTH.

R= 8.314
THETA = 300.

c
IF ( TIME .LT. 1.7325E1O )THEN
PVALUE = 0.0
RATE = 4.32E-4
TSTAR = 0.0
ELSE IF( TIKE .LT. 3.3075E1O )THEN
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PVALUE = 7.48E6
ml’E = 2.16E-4
TSTAR = 1.7325E1O
EIISE
l?vALuE = 1.0886e7
RATE = 0.0
TSTAR = 0.0
END IF

c
c .... CORRECT VOLUME AT THIS TIME TO GET
c

EN = PVALUE + RATE * ( TINE - TSTAR )
SCALE = 1.0
SYMFAC = 4.
XLENG = 91.44

c

VOLUME OF VOIDS

c .... THIS MODIFICATION REMOVES THE BACKFILL FROM VSOLID
c

VSOLID = 1229.
VOLUME = SYMFAC ● VOLUME * XLENG - VSOLID
IF( VOLUME .LE. 0.0 )VOLUME = 1.

c
PGAS = SCALE * EN * R * THETA / VOLUME

c
RETuRN
END
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Printed Output Description

The SANTOS printed output begins with an echo of the input data stream from input unit 5. This
is followed by the PROBLEM DEFINITION section that lists the number of elements, nodal
points, number of materials, analysis type, etc. that pertain to defining the problem to be solved.
The information presented in this section also includes the solution algorithm parameters such as
convergence tolerances, houglass stiffness and viscosity values, and the effective modulus status.
The amount of output written in this section depends on the analysis type and the options requested.
An example of this output for a sample analysis is shown below.

PRO BLEMDE FIN IT ION

NOMBER OF ELEMENTS ...................... 216
NUMBER OF NODES ......................... 247
NUMBER OF MATERIALS ..................... 1
NUMBER OF FUNCTIONS ..................... 1
NUMBER OF CONTACT SURFACES .............. 0
NUMBER OF RIGID SURFACES ................ 2
NUMBER OF MATERIAL POINTS MONITORED ..... 0
ANALYSIS TYPE ........................... AXISYIWETRIC
GLOBAL CONVERGENCE MEASURE ..............
RESIDUAL TOLEIUWCE ...................... 5.000E-01
WUSIMUMN UMBEROFITERATIONS ............ 3000
ITERATIONS FOR INTERMEDIATE PRINT ....... 10
MJUCIMUM RESIDUAL TOLERANCE .............. 5.000E+OO
PREDICTOR SCALE FACTOR FUNCTION ......... 0
MINIMUM DAMPING FACTOR .................. 2.000E-01
EFFECTIVE MODULUS STATUS ................ CONSTANT
SCALE FACTOR APPLIED TO TIME STEP ....... 1.000E+OO
STWUN SOFTENING SCALE FACTOR ........... 1.000E+OO
HOURGLASS STIFFNESS FACTOR .............. 1.000E-02
HOURGLASS VISCOSITY FACTOR .............. 3.000E-02

Following the PROBLEM Definition section are the definitions of the load steps, printed
output frequency andtheplotted output frequency. Asample output forthese sections is shown
below. LOAD STEP DEFINITIONS shows the number of steps taken between each defined time
interval. The PRINTED OUTPUT FREQUENCY data echo shows the number of load steps
between printed output dumps during the defined time interval. PLOTTED OUTPUT
FREQUENCY ethos the number of load steps between plot dumps during the defined time
interval.
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LOAD S TE P DE F I N Il! I ONS

TIME NO. OF STEPS TIME
0.000E+OO 100 1.000E+OO

PRINTED OUTP UT FREQUENCY

TIME STEPS BETWEEN PRINTS TIME
0.000E+OO 1 I.000E+OO

PLOTTE~OUTP UT FREQUENCY

TIME STEPS BETWEEN PLOTS TIME
0.000E+OO 1 1.000E+OO

Thenext outputgrouping echosbackthe material type andmaterial constants. Some additional
constants whicharecomputed by SANTOSwithin the constitutive model pre-processor are also
printed.

MATERIALDEF INITIONS

MATERIAL TYPE ........................ELASTIC PLASTIC
MATERIAL ID .......................... 1
DENSITY .............................. 7.833E-06
MATERIAL PROPERTIES:

YOUNGS MODULUS = 2.000E+02
POISSONS RATIO E 3.000E-01
YIELD STRESS 5 7.000E-01
MRDENING MODULUS = 3.000E-01

BETA = 1.000E+OO

The nextsectionof outputechos back the processed input dataregardingkinematic andtraction
boundary condition data. Thisdataalso includesfunction specificationsand contactsurface
definitions. Distinction is made between NO DISPLACEMENT and PRESCRIBED
DISPLACEMENT kinematic boundary conditions.



FUNCTION DEFI NIT IONS

FUNCTION ID ......... 1 NUMBER OF POINTS .... 2

N s F(S)

1 0.000E+OO 0.000E+OO
2 1.000E+OO 1.000E+OO

NO DISPLACEM ENT BOUNDARY CONDITIONS

NODE SET FLAG DIRECTION
4 x

PRESCRIBEDDI SPLACEMENTBOU NDARYCONDITI ONS

NODE SET DIRECTION FUNCTION SCALE AO BO
FLAG ID FACTOR

1 Y 1 9.000E+OO

RIGID SURFACE S

SURFACE SIDE SET COEFFICIENT Xo Yo Nx NY
NUMBER FLAG OF FRICTION

1 300 FIXED 0.000E+OO 1.500E+01 O.OOOE+OO-l.OOOE+OO
2 200 FIXED 0.000E+OO 1.500E+01 0.000E+OO-1.OOOE+OO

Thenextgrouping defines thequantities written tothe plotting data base. Theplotted outputis
groupedbywhether the variable being writtenisanodal, element, orglobal quantity. Theglobal
quantities, FXand FY, written to the data basereferto the sum oftheapplied loads inthex and
y-directions, respectively. The quantities,RX and RY, referto global reaction forces inthex and
y-dhectionssummed atnodesspecified to have NODISPLACEMENT boundary conditions
applied. For axisymmetric analyses, the forces FX, FY, RX, andRY are output perradian. The
nodal vtiables, RESIDX RESIDYRESID, refertoimbakmce or residual forces acting atthe
nodes. The variables RESIDX and RESIDY refer to the x and y-component directions of the
imbalance forces, respectively. The variable RESID is the scalar magnitude of the components.
Material model state variables appear as element variables in the plotting data base.
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VA RI ABLIESONP LO TTINGD ATAB ASE

NODAL ELEMENT GLOBAL
.---- ---.--- ------

DISPLX PRESSURE FX

DISPLY VONMISES FY

RESIDX EQPS Rx
RESIDY RY
RESID ITER

If the INTERMEDIATE PRINT option is in effect then the following output is obtained every n
iterations.For thisexample,n is specified to be every 10 iterations. The values under the STEP
column refer to the number of iterations taken relative to this load step. The column labeled TIME
shows the problem time for which an equilibrium solution is being sought. The column labeled
TIME STEP shows the stable time step internally computed within SANTOS which is being used
to integrate the equations of motion. This number may change from one iteration to the next as the
element is deformed. The column labeled DAMPING FACTOR provides the current adaptive
dynamic relaxation damping parameter. The next two columns provide information regarding
convergence of the load step. The APPLIED LOAD NORM refers to the L2 norm of the externally
applied loads while the RESIDUAL LOAD NORM is the L2 norm of the imbalance forces at each
node. The PERCENT IMBALANCE column is the result of dividing the RESIDUAL LOAD
NORM by the APPLIED LOAD NORM which is the measure used to determine convergence of
the iterative scheme. The column defined as TOTAL STEPS gives a running total of the number
of iterations for the problem.

STEP TIME

10 1.000E-02
20 1.000E-02
30 1.000E-02
40 1.000E-02
50 1.000E-02
60 1.000E-02
70 1.000E-02
80 1.000E-02
90 1.000E-02

TIME
STEP

9.984E-03
9.991E-03
9.994E-03
9.996E-03
9.997E-03
9.998E-03
9.998E-03
9.999E-03
9.999E-03

DAMPING APPLIED RESIDUAL
FACTOR LOAD NORM LOAD NORM
7.105E-O1 2.927E+01 1.047E+02
7.024E-01 2.395E+01 2.456E+01
5.261E-01 1.746E+01 7.866E+O0
9.896E-01 1.600E+01 4.727E+O0
9.574E-01 1.311E+01 2.591E+O0
9.069E-01 1.259E+01 2.O1lE+OO
9.428E-01 1.236E+01 1.604E+O0
9.346E-01 1.200E+01 1.096E+O0
8.438E-01 1.166E+01 7.562E-01

PERCENT
IMBALANcE

357.71
102.55
44.99
29.55
19.77
15.97
12.97
9.13
6.49

TOTAb
STEPS

10
20
30
40
50
60
70
80
90

The final output section to be described is the printed output that results when the iterative solution “
reaches equilibrium as measured by the PERCENT IMBALANCE. The printed output provides
descriptive information about the problem such as when the problem was run, version of the
software, title of the problem and a summary of information about the convergence of the load step.
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1 SANTOS, VERSION SANTOS 2.0 ,RUN ON 01/20/95 ,A’1’16:15:25
UPSETTING OF A CYLINDRICAL BILLET

**************** **************** ● ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛ ☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛☛ ☛☛☛☛☛

S~Y OF DATA AT STEP NUMBER 1, TIME = 1.000E-02
_ER OF ITERATIONS = 212, TOTAL lWJ3fBEROF ITERATIONS = 212

FINAL CONVERGENCE TOLERANCE = 4.901E-01
SUM OF EXTERNAL FORCES IN X-DIRECTION = 0.000E+OO
SUM OF EXTERNAL FORCES IN Y-DIRECTION = 0.000E+OO

SUM OF REACTION FORCES IN X-DIRECTION = 0.000E+OO
SUM OF REACTION FORCES IN Y-DIRECTION =-3.561E+OI
**************** **************** **************** **************** *****

**** PLOT TAPE WRITTEN AT TI~ = 1.000E-02 STEP NUMBER 1 ****
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Adding A New Constitutive Model to SANTOS

A materialinterfacesubroutinehas been incorporated which allows the constitutive model devel-
oper to add a new material model with very little effort. The interface has been designed so that
the developer does not need to understand the internal workings of SANTOS especially with
respect to allocation and management of computer memory. If the developer follows the instruc-
tions in subroutine MATINT, then SANTOS will handle all memory allocation, material data
reading, and material data printing. There are three steps that should be followed when adding a
new model.

SteD 1

Subroutine MATINT contains instructions using FORTRAN comment cards which outline the
steps that should be followed to add a new material model. Most of the required changes involve
adding or changing numbers in DATA and PARAMETER statements. Since we have no prior
knowledge of what the material constants represent for a particular material, the code requires
that a few lines of FORTRAN be added to compute the initial dilatational modulus (k+ 2W) and

the initial shear modulus (2w) for the material. The dilatational modulus and the shear modulus
must be stored in the variables DATMOD and SHRMOD, respectively. At this same location in
the code it is possible to calculate any combination of the input parameters that maybe required in
the constitutive subroutine (e.g. bulk modulus from Young’s modulus and Poisson’s ratio).

There is a restriction to twenty characters in the material name, material cues, and internal state
variable names which are defined in subroutine MATINT. The names may have blanks which
means that multiple word cues are allowed. The names must be defined such that each word in the
name is unique to the first three characters. This means that material cues C 1, C2, C3, etc., are
legal; but CON 1, CON2, CON3, etc., are not.

This step is optional and is only required if the new material model contains internal state vari-
ables which must be initialized to some value other than zero (all internal state variables are ini-
tialized to zero by default). If state variables must be initialized, an ELSE IF statement must be
added to subroutine SVINIT for this material. This statement should read:

ELSE E( MKIND .EQ. (new material number)) THEN

initialize internal
state variables here

.

.

.

This new material number corresponds to the position where the material resides in the list of
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material names defined in subroutine MATINT. Generally, when adding a new material, the new
material is the last one defined and its number will be the same as the number of materials defined
in STEP 1. The application of this step should be obvious from inspecting the coding of the other
material models. Please use comments to record changes to the code.

In subroutine UPDSTR, the call to the new material model must be added. The material subrou-
tine may have any appropriate name, but current convention has been to name the material sub-
routines MAT1, MAT2, MAT3, etc., where the number corresponds to the material number
defined in Step 2. The call is included by adding an ELSE IF block to subroutine UPDSTR which
should read:

ELSE II?(MIUND .EQ. (new material number)) THEN
CALL new subroutine ..... argument list..,.)

The application of this step should be obvious from inspecting the coding of the other material
models. Please use comments to record changes to the code.
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Verification and Sample Problems

Sample problems are included to demonstrate code veriilcation and to acquaint the user with the
SANTOS program. The problems were selected to exercise and demonstrate many of the major
features and options in the code.

Larre De ecbfl “onAnalvsis of a Cantilever Beam

The large deformation of an elastic cantilever beam is included for comparison with the analytical
solution as formulated by Holden (1972). The beam problem is challenging for the uniform strain
quadrilateral elements and for the dynamic relaxation (DR) algorithm. The beam has a length-to-
thickness ratio of 30. The beam material is assumed to be elastic with a Young’s modulus of

1.x 107 psi and a Poisson’s ratio equal to zero. Both gravity and normal pressure loading
conditions are considered.

The fwst loading condition considered is the beam loaded with gravity, which keeps the direction
of loading constant throughout the analysis. Following the notation and development of Holden,
the equation for the slope of the beam is

d2e— = –kscOse,

d52
(EQ E-1)

where 9 is the angle between the beam neutral axis and the x-axis; 3 = s/L is the normalized arc

L3
length along the beam neutral axis; k = w~ is a nondimensional loading parameter; L is the

length of the beam; w is the loading intensity (load per unit length); 1?is Young’s modulus; and 1
is the beam’s moment of inertia. This equation describes the finite deflection of uniform beams
using the Euler-Bernoulli theory of bending subject to vertical (gravity) loading. Boundary
conditions for the cantilevered beam are a specified zero rotation at the freed end.

The normalized horizontal and vertical deflections of the free end of the beam are then given by

1

h/L = jcoseds (EQ E-2)

o

and

1

WL = jsineds, (EQ E-3)

o

respectively. Equation E-1 is solved using a Runge-Kutta procedure, the integrations for
deflections are computed using adaptive quadrature, and the results are checked by comparison to

E-3



Holden’s published solution. Figure E- 1 shows a schematic of the beam geometry and boundary
conditions. The beam has thirty elements along its length and four through the beam thickness.
The nonlinear beam response is calculated with SANTOS (triangles and squares) and compared to
Holden’s published solution (solid line) in Figure E-2. The comparison for this case is excellent.
The deformed shape of the beam corresponding to k = 0.,6.5, and 20. is shown in Figure E-3.
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Figure El. Schematic of Cantilever Beam With Gravity Loading
Showing the Geometry and Boundary Conditions

1,0 I 1 I 1 I 1 , 1 I 1 I I I I 1 1

1

1
0.8

0.6

$
.

$ L

0.4

0.2

0.0
0.0 4.0 8.0 12.0 16.0 20.0

k (=wL3/El)

Figure E-2. Comparison of Analytic (solid line) and SANTOS (triangles and squares)
Tip Displacements for the Beam With Gravity Loading.
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To obtain a solution to the gravity loaded beam problem using DR, we must make use of the NO
DAMPING option. This option turns off the damping for a specified number of iterations which
allows the beam to take on a more correct deformed shape before damping begins. In addition, this
option is invoked only for the first 50 load steps which corresponds to the tip of the beam reaching
a deflection magnitude equal to the thickness of the beam. Some large imbalance forces are
experienced with the early load steps but these quickly disappear as the beam deforms and the
deformation mode changes from small-deformation bending behavior to large-deformation
bending behavior. A totalof310 load steps were taken for the gravity loaded case with each load
stepaveraging 733 iterations. The SANTOS input file for the gravity loaded beam problem is
shown in Figure E-4.

Figure E-3. Deformed Shape of the Beam Under Gravity Loading.
Deformed Shapes Correspond to k = 0.0,6.5, and 20.

The second loading condition is pressure applied along the top of the beam so that the loads
remains normal to the surface throughout deformation. The beam theory equation for this case is

(EQ E-4)

with the same boundary conditions as before. For large load magnitudes, this configuration causes
more severe bending of the beam as shown in Figure E-5. The analytic solution (solid line) is
compared to the SANTOS solution (triangles and squares) in Figure E-6. For this load case the
finite element model is stiffer than the Euler-Bernoulli beam theory predicts at the higher loads.
This difference is probably due to the fact that when the beam starts bending back on itself, the

E-5



TITLE
30 TO 1 BEAM WITH GRAVITY LOADS - SANTOS QA PROBLEM

RESIDUAL TOLERANCE , 0.5
MAXIMUM ITERATIONS , 3000
INTERMEDIATE PRINT, 100
MAXIMUM TOLERANCE, 1000
NO DAMPING, 100, 50
PLANE STRAIN
STEP CONTROL
310 1.55
END

PLOT TIME
10 1.55

END
OUTPUT TIME
1 1.55
END

PLOT NODAL DISPLACEMENT
PLOT ELEMENT STRESS,VONMISES
NO DISPLACEMENT Y, 4
NO DISPLACEMENT X, 4
GRAVITY, l,O.,1.,0.
FUNCTION, 1 $ FUNCTION TO DEFINE GRAVITY LOADS
o. 0.
2. -2.
END
MATERIAL, 1, ELASTIC, 400.
YOUNGS MODULUS = 1.E7
POISSONS RATIO = 0.0
Em
EXIT

Figure E-4. SANTOS InputFilefortheGravityI_madedBeam Veriilcat.ion

Problem.

radiusofcurvatureisno longerlargecompared tothethicknessofthebeam. The SANTOS

solutionemployed 1550 loadstepswithan averageof270 iterationsperloadstep.T’heinputfile

forthisloadcaseisshown inFigureE-7.

Elastic-Pl astic Thick-Walled HO11OW!%here

The problem of a thick-walled hollow sphere loaded into the plastic range by an internal pressure
serves as a good check of the elastic-plastic material model. The two cases analyzed are for an
elastic-perfectly plastic sphere and an elastic-plastic sphere with linear strain hardening. The
sphere analyzed has an internal radius of one and an outer radius of two. The internal pressure is
increased from the start of initial yield at the inner surface and is increased until the sphere becomes
fully plastic. The problem is analyzed using the axisymmetric option in SANTOS. In addition,
symmetry boundary conditions are assumed so that only a quarter of the sphere is modeled as
shown in Figure E-8. The mesh discretization uses 30 elements spaced uniformly in the radial
direction and 20 elements spaced uniformly around the circumference for a total of 600 elements.
The sphere material has a Young’s modulus of 207. GPa and a Poisson’s ratio of 0.3. The yield
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Figure E-5. Deformed Shape of the Beam With Applied Pressure Loading.
Deformed Shapes Correspond to k = 0.0,6.5, 13., and 20.
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Figure E-6. Comparison of Analytic (solid line) and SANTOS (squares and triangles)
Tip Displacements for the Beam With Applied Pressure Loading.
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TITLE
30 TO 1 BEAM WITH APPLIED PRESSURE

RESIDUAL TOLERANCE, 0.5
MAXIMUM ITERATIONS, 3000
INTERMEDIATE PRINT, 100
MAXIMUM TOLERANCE, 1000
NO DAMPING, 100, 50
PLANE STRAIN
STEP CONTROL
1550 1.55
END

PLOT TIME
10 1.55
END

OUTPUT TIME

1 1.55
END
PLOT NODAL DISPLACEMENT
PLOT ELEMENT STRESS,VONMISES
NO DISPLACEMENT Y, 4
NO DISPLACEMENT X, 4
PRESSURE, 30, 1, 400.
PUNCTION, 1 $ FUNCTION TO DEFINE PRESCRIBED DISPLACEMENT
o. 0.
2. 2.
END

MATERIAL, 1, ELASTIC, 2167.
YOUNGS MODULUS = 1.E7
POISSONS RATIO = 0.0
END
EXIT

FigureE-7. SANTOS Input File forPressure Loaded BeamVerif3cation
Problem.

stressissetto 10000. andthehardeningmodulusis 20.7GPaforthelinearstrainhardening
problem. The hardening modulus is set to zero for the elastic-perfectly plastic analysis.

The analytical solutions for these problems were derived by Mendelson (1968). For an internally
pressurized sphere, the elastic/plastic interface expands radially outward from the inner surface of

-the sphere according to the following equations taken from Mendelson. The fust relation is for the
elastic perfectly-plastic material and defines the radius, c, of the elastic-plastic interface

P = 21npc+3
[)

: 1–+

B.

(EQ E-5)

and the second equation defines the elastic-plastic interface for the linear strain hardening material.
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()4:(1-V) 1-: pc3
[J

+2(1–m)lllpc +;(l-nz) 1–+

L P.
P=

l-m+2m(l–v)
(EQE-6)

The non-dimensionalvariablesused inEquationsE-5 and E-6 are:P = P/CJY is the ratio of

applied internal pressure to material yield stress, crY;pC = c/a is the ratio of the elastic-plastic

interface radius to the sphere’s internal radius, a; PC = b/c istheratioof the sphere’s outer radius,

b, to the elastic-plastic interface radius; ~ = b/a is the ratio of the sphere’s outer to inner radii;

m is the ratio of the hardening modulus to the Young’s modulus; and v is Poisson’s ratio.

Ur = o.

L

R c Uz=o.

Figure E-8. Finite Element Mesh Discretization Used for the Thick-
Walled Hollow Sphere Analyses.

In Figures E-9 and E-10, the non-dimensional effective stress is plotted as a function of radius for
loadings starting from initial plastic yield at the sphere inner radius to full plastic yielding of the
sphere. The analytical solutions are plotted as solid lines in the figures. As can be seen from the
plots of normalized effective stress, the computed and analytical results match almost exactly. The
only deviation between the solutions is seen in Figure E-9 for the case where the sphere should be
fully plastic. The SANTOS solution does not predict a fully plastic sphere. The normalized
effective stress for the element at the sphere outer surface does not yield although the pressure
applied should induce full plastic yielding of the sphere. It appe~s that full plastic yielding results
in an increase in the calculated outer radius by an amount to stop further yielding and obtain
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Normalized Effective Stress Results for the Internally Pressurized
Elastic-Perfectly Plastic Thick-Walled Hollow Sphere

equilibrium. In addition, if the sphere were to become fully plastic for an elastic-plastic material
with no hardening, the solution would be difficult to converge since the material would be flowing
in an unrestrained manner. The SANTOS input fde for the internally pressurized elastic-plastic
thick-walled hollow sphere is given in Figure E-11.

Umettuw o a Cv
.

f lindri cd Billet

This verification problem examines the behavior of a cylindrical metallic billet that has undergone
a 6090 upset by compression between two flat, rigid dies. The billet has as initial dimensions a
length of 30 mm and a diameter of 20 mm. The axisymmetric option in SANTOS is used and only
thetop halfofthebilletismodeled sincethemiddlesurfaceofthebilletcan be viewed asa plane

of symmetry. The time history of the die force isto be compared to computational results by other
analysts (Taylor, 1981).

The die material is assumed to be elastic-plastic with linear strain hardening. The material
properties are taken from Lippmann (1979). The billet has a Young’s modulus of 200 Gpa and a
Poisson’s ratio of 0.3. The initial yield stress of the material is 700 Mpa with a hardening modulus
of 300 Mpa. A uniform mesh containing 216 quadrilateral elements is used. The mesh
discretization and boundary conditions used are shown in Figure E-12. The middle surface of the
billet is given a prescribed vertical displacement which compresses the billet against the top rigid
die. The rigid die is modeled using the RIGID SURFACE option in SANTOS. The die surface is
assumed to be rough which results in a no slip condition between the billet and die. This behavior
can be achieved by specifying the ffiction value as FIXED on the RIGID SURFACE option.
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Fignre E-IO.Normalized Effective Stress Results for the Internally
Pressurized Elastic-Plastic Thick-Walled Hollow Sphere
With Linear Hardening.

During deformation it is expected that the external surfaw of the billet will fold and come into
contact with the rigid die, which means that tlw definition of the side set associated with the rigid
surface must include both elements along the top of the billet and elements along the external
boundary, One hundred load steps were taken f&this analysis.

Figure E-13 shows the deformed shape of the billet at several different times during the upset
process. The folding of the billet’s external surface is clearly seen as well as its contact with the
rigid die. A ciose-up of the billet’s final defmrned shape at 60% upset is shown in Figure E- 14.
F~gureE-15 shows a comparison of the upset force vs. die dispkwement with nxwlts taken from
Taylor (1981). The agreement is seen to be excellent until the die displacement reaches 7.0 mm.
At this value of displacement the billet is folding and the flit nodal point on the external surface
is just coining into contact with the rigid surface. The slight difference in the upset force seen in
the figure at die displacements greater than 7.0 mm is related to the contact occurring between the

‘ folding billet and the rigid surface. The SANTOS input file for the upsetting of the cylindrical billet
is given in Figurv E-16.

Bedded salt is being considered as a storage medium for the long-term disposal of contact-handled
transuranic wastes produced as a by-product of the defense activities of the United States. %& was
selected because of its propensity to creep under the action of deviatoric stresses. This creep
deformation would everitwilly entomb the waste and isolate it horn the biosphere. Under the
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TITLE
SANTOS QA PROBLEM - HOLLOW SPHERE - 10/26/94 - HARDENING M = 0.1

AXISYMMETRIC
MAXIMUM ITERATIONS 20000
RESIDUAL TOLERANCE .01
MATERIAL,l, ELASTIC PLASTIC,l.O
YOUNGS MODULUS 2.07E+11
POISSONS RATIO 0.3
YIELD STRESS 10000.
HARDENING MODULUS 2.O7E+1O
BETA O.
END
PUNCTION,l

o. 0.
1. 5833.
1.25 9756.5
1.5 13003.2
1.75 15798.4
2. 18278.8

END
STEP CONTROL

1,1.
1,1.25
1,1.50
1,1.75
1,2.0

END
PLOT TIME
1,1.
1,1.25
1,1.50
1,1.75
1,2.0

END
OUTPUT TIME
1,1.
1,1.25
1,1.50
1,1.75
1,2.0

END
NO DISPLACEMENT,X,l
NO DISPLACEMENT,Y,2
PRESSURE,3,1,1.
EXIT

FigureE-ll. SANTOS InputFilefortheInternally PressurizedEkmic-Plastic Thick-
Walled Hollow Sphere With Linear Hardening.

cument plan,thewastesaretobe storedindisposalrooms,which arepartofa mined repository,

650 m underground.The disposalrooms are10.06 m wide by 3:96 m high and 91,44 m in length.
As part of the repository performance assessment activity, it was a requirement to determine the
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Figure E-12. Mesh Discretization and Boundary Conditions Used for the
Analysis of the Upsetting of a Cylindrical Billet.

x x
Figure E-13. Plots of the Deforming Billet at Various Times During the Upset.

Plots Shown Comespond to Non-Dimensional Times of 0.,0.33,
0.667, and 1.0.
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Figure E-14. Final Deformed Shape of the Billet After 60% Upset.
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Figure E-15. Comparison of SANTOS Calculation With Numerical Results
Taken From Taylor (198 1) for the Upset of a Cylindrical
Billet.

time required for the disposal room to creep closed. in answering this question, a model
disposal room in an all salt stratigraphy was developed.

of a

In the disposal room model, it is assumed that the disposal room is one of infinite number of
parallel rooms located at the repository horizon. This assumption allows the use of vertical planes
of symmetry at the room centerline and in the center of the pillar between rooms which results in
the problem geometry shown with the discretized mesh in Figure E-17. The horizontal mesh
dimension between symmetry planes is 20.27 m. The vertical mesh boundaries are located
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TITLE
UPSETTING OF A CYLINDRICAL BILLET

AXISYMNETRIC
STEP CONTROL
100,1
END
INTERMEDIATE PRINT= 10
MAXIMUM ITERATIONS = 3000
RESIDUAL TOLERANCE = 0.5
MAXIMUM TOLERANCE = 100.0
OUTPUT TIME
1,1
END
PLOT TIME
1,1
END
PLOT NODAL = DISPLACEMENT,REACTION,RESIDUAL
PLOT ELEMENT = VONMISES,PRESSURE
PLOT STATE = EQPS
NO DISPLACEMENT,X = 4
PRESCRIBED DISPLACMENT,Y = 1,1,9.E-3
FUNCTION = 1
0,0
1,1
END
RIGID SURFACE = 500 , 0., 15.E-3, O., -1., FIXED
MATERIAL,l,ELASTIC PLAsTIc,7.833E-6
YOUNGS MODULUS . 200e9 , POISSONS RATIO = .3
YIELD STRESS = .7e9 , HARDENING MODULUS = .3e9 , BETA = 1
END
EXIT

FigureE-16.SANTOS InputFileUsedfor Ana.lyzingtheUpsetting of
aCylindrical Billet.

approximately50 mfrom the disposal room. The vertical extent ofthe problem is designedto
removethe effect ofthe boundaries awayfrom the disposal room . The problem has atraction
representing the overburden load appliedatthetop boundaryandthe bottom boundary hasa
tractionappliedto equilibrate theoverburden load plusthe additional Ioadsproducedby applied
gravity forces. An initial hydrostatic stress state is assumed to exist with the value of the stress set
to the lithostatic stress. Vertical motion of the model is restrained at a location near the top surface
as shown in Figure E-17. Contact surfaces are defined around the interior of the disposal room to
accommodate contact that occurs during the large-deformation room clostue. Contact pairings are
defined between the roof-floor, pillar-roof, and pillar-floor. The coefficient of friction is assumed
to be zero for this calculation.

The salt is modeled using the M-D creep model from the SANTOS material library. The M-D
model is a combined transient-secondary creep constitutive model for rock salt. The model
includes the effects of workhardening and recovery through a state variable function that modiFles
the steady-state creep rate. The Tresca stress generalization is used in the model for the effective
stress definition. The M-D material constants for argillaceous salt are given in Table 1. The AUTO
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Figure E-17. Geometry, Boundary Conditions and Mesh Discretization for
Analyzing the Closure of a Disposal Room in Salt.

STEP option is used with the M-D material model for this problem. The time step necessary for a
stable and accurate solution for the M-D model is very small at the start of the analysis. The AUTO

STEP option begins with a small initial time step, 1.x 10-5 seconds, and allows it to grow to an

analystspecified maximum of 2.592x 106 seconds. Without invoking the AUTO STEP option, it
is very time consuming to perform this analysis.

Figure E-18 shows the deformed shape of the disposal room at several different times from the
initial undeformed state to final closure. The closure process is characterized by shortening of the
pillar and an inward displacement of the disposal room roof and floor. Contact between the roof-
pillar and floor-pillar occurs near the room corners. As contact occurs, the rate of room closure
slows as the pillar begins to support the roof and floor. A close-up of the disposal room at closure
is shown in Figure E-19. The contact of the disposal room interior surfaces is clearly shown in this
figure. Figure E-20 shows the time history of room closure as measured by the sum of the
displacements of the floor and roof centerline nodal points. When the sum of the displacements
reaches 3.96 m then the floor and roof have come into contact and the disposal room is assumed to
be closed. Closure is seen to occur at approximately 57 years. The SANTOS input file for
analyzing the closure of a waste disposal room in salt is given in Figure E-21.
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Table 1: M-D Argillaceous Salt Creep Properties

Parameters
(units)

Parameter
Value

%=-t-+=

Q1 (ca.llmole) I 25,000

B1 (/S13C)

5.5

8.998E6

AZ (/WC) I 1.314E13

Qz (ca.Vmole) I 10,000

n2 5.0

%=-t==

9 I 5,335

M 3.0

KO I 2.470E6

+--l-==
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Figure E-18. Plots of thexDeforming Disposal Roomxat Selected Times From
Initial Excavation to Final Closure. Times 0.,25 .50., and 80 Years.

x

Figure E-19. Deformed Shape of the Disposal Room 100 Years After
Excavation.
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Figure E-20. Closure History of the Disposal Room Centerline. Contact of the
Floor and Roof is Reached at Approximately 57 Years.
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TITLE
DISPOSAL ROOM CALCULATION TO CLOSURE ALL SALT - M-D CREEP MODEL

RESIDUAL TOLERANCE = 0.5
MAXIMUM ITERATIONS = 3000
INTERMEDIATE PRINT = 100
MAXIMUM TOLERANCE = 10.0
PLANE STRAIN
ELASTIC SOLUTION
INITIAL STRESS = USER
GRAVITY = 1 = O. = -9.8066 = O.
AUTO STEP .02 2.592E6 NOREDUCE 1.E-5
HOURGLASS STIFFENING = .005
STEP CONTROL
4000 3.15E9

END
PLOT TIME
10 3.15E9

END
OUTPUT TIME
10 3.15E9

END
PLOT NODAL DISPLACEMENT, RESIDUAL
PLOT ELEMENT STRESS, VONMISES, EFFMOD
PLOT STATE EQCS
NO DISPLACEMENT X, 1
NO DISPLACEMENT X, 3
NO DISPLACEMENT Y, 3
FUNCTION,l
o. 1.
10.E9 1.
END
PRESSURE,4,1, 13.57E6
PREssURE,2, 1,15.96E6
CONTACT SURFACE, 200, 100, 0., 1.E-6, 1.E40
CONTACT SURFACE, 300, 200, 0., 1.E-6, 1.E40
CONTACT SURFACE, 100, 300, 0., 1.E-6, 1.E40
MATERIAL, 1, M-D CRNEP MODEL, 2300. $ ARGILLACEOUS HALITE
~o ~ = 24.8E9
BULK MODULUS = 20.66E9
Al = 1.407E23
Q1/R = 41.94
N1 = 5.5
B1 = 8.998E6
A2 = 1.314E13
Q2/R = 16.776
N2 = 5.0
B2 = 4.289E-2
SIGO = 20. 57E6
QLC = 5335.
M = 3.o
KO = 2.47E6
c = 2.759
ALPHA = -14.96
BETA = -7.738
DELTLC = .58
RN3 = 2.
AMULT = .95
END
EXIT

FigureE-21. SANTOS InputFileforAnalyzing the ClosureofaWaste Disposal
RoominSalt.
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